Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6429–6438 | Cite as

Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan

  • Ayemeh Bagheri Hashkavayi
  • Jahan Bakhsh Raoof
  • Reza Ojani
Research Paper

Abstract

In this work, a highly sensitive, low-cost, and label-free aptasensor based on signal-on mechanisms of response was developed by immobilizing the aptamer on gold nanoparticles (AuNPs)/amine-functionalized silica nanoparticle (FSN)/screen-printed electrode (SPE) surface for highly selective electrochemical detection of tryptophan (Trp). The hemin (Hem), which interacted with the guanine bases of the aptamer, worked as a redox indicator to generate a readable electrochemical signal. The changes in the charge transfer resistance have been monitored using the voltammetry and electrochemical impedance spectroscopic (EIS) techniques. The peak current of Hem linearly increased with increasing concentration of Trp, in differential pulse voltammetry, from 0.06 to 250 nM with a detection limit of 0.026 nM. Also, the results obtained from EIS studies showed that the Trp was detected sensitively with the fabricated aptasensor in the range of 0.06–250 nM. The detection limit is 0.01 nM, much lower than that obtained by most of the reported electrochemical methods. The usage of aptamer as a recognition layer led to a sensor with high affinity for Trp, compared with control amino acids of tyrosine, histidine, arginine, lysine, valine, and methionine. The usability of the aptasensor was successfully evaluated by the determination of Trp in a human blood serum sample. Thus, the sensor could provide a promising plan for the construction of aptasensors.

Graphical abstract

Schematic outline the principle for tryptophan aptasensing

Keywords

Tryptophan Hemin Signal-on aptasensor Functionalized silica nanoparticles Gold nanoparticles 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this research result.

This work was carried out under the supervision of the North Research Center, Pasteur Institute of Iran (Amol, Iran), with ethical approval.

Healthy human serum sample for real sample analysis was supplied by the North Research Center, Pasteur Institute of Iran (Amol, Iran) with ethical approval.

Supplementary material

216_2017_588_MOESM1_ESM.pdf (994 kb)
ESM 1 (PDF 994 kb)

References

  1. 1.
    Safavi A, Momeni S. Electrocatalytic oxidation of tryptophan at gold nanoparticle-modified carbon ionic liquid electrode. Electroanalysis. 2010;22(23):2848–55.CrossRefGoogle Scholar
  2. 2.
    Knott PJ, Curzon G. Free tryptophan in plasma and brain tryptophan metabolism. Nature. 1972;239(5373):452–3.CrossRefGoogle Scholar
  3. 3.
    Ya Y, Luo D, Zhan G, Li C. Electrochemical investigation of tryptophan at a poly (p-aminobenzene sulfonic acid) film modified glassy carbon electrode. Bull Korean Chem Soc. 2008;29(5):928.CrossRefGoogle Scholar
  4. 4.
    Chen ZD, Wei JX, Wang WC, Kong Y. Separation of tryptophan enantiomers with molecularly imprinted polypyrrole electrode column. Chin Chem Lett. 2010;21(3):353–6.CrossRefGoogle Scholar
  5. 5.
    Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2, 3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004;15(3):618–29.CrossRefGoogle Scholar
  6. 6.
    Cozzi A, Zignego A, Carpendo R, Biagiotti T, Aldinucci A, Monti M, et al. Low serum tryptophan levels, reduced macrophage IDO activity and high frequency of psychopathology in HCV patients. J Viral Hepat. 2006;13(6):402–8.CrossRefGoogle Scholar
  7. 7.
    Capuron L, Ravaud A, Neveu P, Miller A, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry. 2002;7(5):468–73.CrossRefGoogle Scholar
  8. 8.
    Huang A, Fuchs D, Widner B, Glover C, Henderson D, Allen-Mersh T. Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br J Cancer. 2002;86(11):1691–6.CrossRefGoogle Scholar
  9. 9.
    Ren J, Zhao M, Wang J, Cui C, Yang B. Spectrophotometric method for determination of tryptophan in protein hydrolysates. Food Technol Biotechnol. 2007;45(4):360.Google Scholar
  10. 10.
    Takagai Y, Igarashi S. Determination of ppb levels of tryptophan derivatives by capillary electrophoresis with homogeneous liquid-liquid extraction and sweeping method. Chem Pharm Bull. 2003;51(4):373–7.CrossRefGoogle Scholar
  11. 11.
    Lin Z, Chen X, Cai Z, Li P, Chen X, Wang X. Chemiluminescence of tryptophan and histidine in Ru (bpy)3 2+-KMnO4 aqueous solution. Talanta. 2008;75(2):544–50.CrossRefGoogle Scholar
  12. 12.
    Delgado-Andrade C, Rufián-Henares JA, Jiménez-Pérez S, Morales FJ. Tryptophan determination in milk-based ingredients and dried sport supplements by liquid chromatography with fluorescence detection. Food Chem. 2006;98(3):580–5.CrossRefGoogle Scholar
  13. 13.
    Bagheri Hashkavayi A, Bakhsh Raoof J, Ojani R, Hamidi Asl E. Label-free electrochemical aptasensor for determination of chloramphenicol based on gold nanocubes-modified screen-printed gold electrode. Electroanalysis. 2015;27(6):1449–56.CrossRefGoogle Scholar
  14. 14.
    Hashkavayi AB, Raoof JB, Azimi R, Ojani R (2016) Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol. Analytical and bioanalytical chemistry:1–9.Google Scholar
  15. 15.
    Eissa S, Siaj M, Zourob M. Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron. 2015;69:148–54.CrossRefGoogle Scholar
  16. 16.
    Lian Y, He F, Wang H, Tong F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosens Bioelectron. 2015;65:314–9.CrossRefGoogle Scholar
  17. 17.
    Zhao B, Wu P, Zhang H, Cai C. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron. 2015;68:763–70.CrossRefGoogle Scholar
  18. 18.
    Luo P, Liu Y, Xia Y, Xu H, Xie G. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron. 2014;54:217–21.CrossRefGoogle Scholar
  19. 19.
    Yan F, Wang F, Chen Z. Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sensors Actuators B Chem. 2011;160(1):1380–5.CrossRefGoogle Scholar
  20. 20.
    Wang J, Wang F, Dong S. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch. J Electroanal Chem. 2009;626(1):1–5.CrossRefGoogle Scholar
  21. 21.
    Huang L, Yang X, Qi C, Niu X, Zhao C, Zhao X, et al. A label-free electrochemical biosensor based on a DNA aptamer against codeine. Anal Chim Acta. 2013;787:203–10.CrossRefGoogle Scholar
  22. 22.
    Bing T, Chang T, Yang X, Mei H, Liu X, Shangguan D. G-quadruplex DNA aptamers generated for systemin. Bioorg Med Chem. 2011;19(14):4211–9.CrossRefGoogle Scholar
  23. 23.
    Hianik T, Ostatná V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry. 2007;70(1):127–33.CrossRefGoogle Scholar
  24. 24.
    Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron. 2013;44:152–9.CrossRefGoogle Scholar
  25. 25.
    Lai Y, Ma Y, Sun L, Jia J, Weng J, Hu N, et al. A highly selective electrochemical biosensor for Hg 2+ using hemin as a redox indicator. Electrochim Acta. 2011;56(9):3153–8.CrossRefGoogle Scholar
  26. 26.
    Chinnapen DJ, Sen D. Hemin-stimulated docking of cytochrome c to a hemin-DNA aptamer complex. Biochemistry. 2002;41(16):5202–12.CrossRefGoogle Scholar
  27. 27.
    Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2(8):1639–44.CrossRefGoogle Scholar
  28. 28.
    Wu Y, Phillips JA, Liu H, Yang R, Tan W. Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano. 2008;2(10):2023–8.CrossRefGoogle Scholar
  29. 29.
    Graham D, Thompson DG, Smith WE, Faulds K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol. 2008;3(9):548–51.CrossRefGoogle Scholar
  30. 30.
    Kashefi-Kheyrabadi L, Mehrgardi MA. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron. 2012;37(1):94–8.CrossRefGoogle Scholar
  31. 31.
    Bagheryan Z, Raoof JB, Ojani R, Hamidi-Asl E. Introduction of ketamine as a G-quadruplex-binding ligand using platinum nanoparticle modified carbon paste electrode. Electroanalysis. 2013;25(12):2659–67.CrossRefGoogle Scholar
  32. 32.
    Bagheryan Z, Raoof J-B, Ojani R, Rezaei P. A human telomeric G-quadruplex-based electronic nanoswitch for the detection of anticancer drugs. Analyst. 2015;140(12):4068–75.CrossRefGoogle Scholar
  33. 33.
    Feifel SC, Lisdat F. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J Nanobiotechnol. 2011;9(1):59.CrossRefGoogle Scholar
  34. 34.
    Tashkhourian J, Nami-Ana S. A sensitive electrochemical sensor for determination of gallic acid based on SiO 2 nanoparticle modified carbon paste electrode. Mater Sci Eng C. 2015;52:103–10.CrossRefGoogle Scholar
  35. 35.
    Nam J-M, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science (New York, NY). 2003;301(5641):1884–6.CrossRefGoogle Scholar
  36. 36.
    Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng. 2001;7(3):291–301.CrossRefGoogle Scholar
  37. 37.
    Yang X, Han Q, Zhang Y, Wu J, Tang X, Dong C, et al. Determination of free tryptophan in serum with aptamer—comparison of two aptasensors. Talanta. 2015;131:672–7.CrossRefGoogle Scholar
  38. 38.
    Mahmoodi NM, Khorramfar S, Najafi F. Amine-functionalized silica nanoparticle: preparation, characterization and anionic dye removal ability. Desalination. 2011;279(1):61–8.CrossRefGoogle Scholar
  39. 39.
    Perez G, Erkizia E, Gaitero J, Kaltzakorta I, Jiménez I, Guerrero A. Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete. Mater Chem Phys. 2015;165:39–48.CrossRefGoogle Scholar
  40. 40.
    Donia AM, Atia AA, Al-amrani WA, El-Nahas AM. Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J Hazard Mater. 2009;161(2):1544–50.CrossRefGoogle Scholar
  41. 41.
    Khezrian S, Salimi A, Teymourian H, Hallaj R. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens Bioelectron. 2013;43:218–25.CrossRefGoogle Scholar
  42. 42.
    Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E, Turner APF, Tiwari A. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem. 2014;86(10):4956–60.CrossRefGoogle Scholar
  43. 43.
    Xu M, Ma M, Ma Y. Electrochemical determination of tryptophan based on silicon dioxide nanoparticles modified carbon paste electrode. Russ J Electrochem. 2012;48(5):489–94.CrossRefGoogle Scholar
  44. 44.
    Liu Y, Xu L. Electrochemical sensor for tryptophan determination based on copper-cobalt hexacyanoferrate film modified graphite electrode. Sensors. 2007;7(10):2446–57.CrossRefGoogle Scholar
  45. 45.
    Huang W, Mai G, Liu Y, Yang C, Qua W. Voltammetric determination of tryptophan at a single-wall carbon nanotubes modified electrode. J Nanosci Nanotechnol. 2004;4(4):423–7.CrossRefGoogle Scholar
  46. 46.
    Shahrokhian S, Bayat M. Voltammetric determination of tryptophan and 5-hydroxytryptophan using graphite electrode modified with a thin film of graphite/diamond nano-mixture and determination of omeprazole using graphite electrode. M.Sc: Thesis, Sharif University of Technology; 2010.Google Scholar
  47. 47.
    Majidi MR, Salimi A, Alipour E. Development of voltammetric sensor for determination of tryptophan using MWCNTs-modified sol-gel electrode. J Chin Chem Soc. 2013;60(12):1473–8.CrossRefGoogle Scholar
  48. 48.
    Chen Z, Okamura K, Hanaki M, NAGAOKA T. Selective determination of tryptophan by using a carbon paste electrode modified with an overoxidized polypyrrole film. Anal Sci. 2002;18(4):417–21.CrossRefGoogle Scholar
  49. 49.
    Kashefi-Kheyrabadi L, Mehrgardi MA. Aptamer-based electrochemical biosensor for detection of adenosine triphosphate using a nanoporous gold platform. Bioelectrochemistry. 2013;94:47–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ayemeh Bagheri Hashkavayi
    • 1
  • Jahan Bakhsh Raoof
    • 1
  • Reza Ojani
    • 1
  1. 1.Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations