Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6421–6427 | Cite as

Click chemistry-mediated cyclic cleavage of metal ion-dependent DNAzymes for amplified and colorimetric detection of human serum copper (II)

Research Paper


The determination of the level of Cu2+ plays important roles in disease diagnosis and environmental monitoring. By coupling Cu+-catalyzed click chemistry and metal ion-dependent DNAzyme cyclic amplification, we have developed a convenient and sensitive colorimetric sensing method for the detection of Cu2+ in human serums. The target Cu2+ can be reduced by ascorbate to form Cu+, which catalyzes the azide-alkyne cycloaddition between the azide- and alkyne-modified DNAs to form Mg2+-dependent DNAzymes. Subsequently, the Mg2+ ions catalyze the cleavage of the hairpin DNA substrate sequences of the DNAzymes and trigger cyclic generation of a large number of free G-quadruplex sequences, which bind hemin to form the G-quadruplex/hemin artificial peroxidase to cause significant color transition of the sensing solution for sensitive colorimetric detection of Cu2+. This method shows a dynamic range of 5 to 500 nM and a detection limit of 2 nM for Cu2+ detection. Besides, the level of Cu2+ in human serums can also be determined by using this sensing approach. With the advantages of simplicity and high sensitivity, such sensing method thus holds great potential for on-site determination of Cu2+ in different samples.

Graphical abstract

Sensitive colorimetric detection of copper (II) by coupling click chemistry with metal ion-dependentDNAzymes


Copper (II) detection Click chemistry Colorimetry DNAzyme Human serum 



This work was supported by the National Natural Science Foundation of China (Nos. 21675128 and 21505010), Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2015jcyjA1357), and scientific research innovation team of Chongqing University of Technology (2015TD22).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The present study was approved by the Ethics Committee of Southwest University, and written informed consent was obtained from all individuals participating in the study prior to the collection of the serum samples.


  1. 1.
    Wang W, Fu A, You J, Gao G, Lan J, Chen L. Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells. Tetrahedron. 2010;66(21):3695–701.CrossRefGoogle Scholar
  2. 2.
    Kuo C-T, Liu Y-M, Wu S-H, et al. Visual semiquantification via the formation of phase segregation. Anal Chem. 2011;83(10):3765–9.CrossRefGoogle Scholar
  3. 3.
    Halfdanarson TR, Kumar N, Li CY, Phyliky RL, Hogan WJ. Hematological manifestations of copper deficiency. Eur J Haematol. 2008;80(6):523–31.CrossRefGoogle Scholar
  4. 4.
    Jaiser SR, Winston GP. Copper deficiency myelopathy. J Neurol. 2010;257(6):869–81.CrossRefGoogle Scholar
  5. 5.
    Kumar N. Copper deficiency myelopathy. Mayo Clin Proc. 2006;81(10):1371–84.CrossRefGoogle Scholar
  6. 6.
    Sarkar B, Sigel H. Metal ions in biological systems, vol. 12. New York: Marcel Dekker; 1981. p. 233–81.Google Scholar
  7. 7.
    Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51(6):730–50.CrossRefGoogle Scholar
  8. 8.
    Lin T-W, Huang S-D. Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a multielement graphite furnace atomic absorption spectrometer. Anal Chem. 2001;73(17):4319–25.CrossRefGoogle Scholar
  9. 9.
    Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV. Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus arion) measured by laser ablation inductively coupled plasma mass spectrometry. Anal Chem. 2007;79(16):6074–80.CrossRefGoogle Scholar
  10. 10.
    Li H, Huang X-X, Kong D-M, Shen H-X, Liu Y. Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+-dependent DNAzyme/substrate complex. Biosens Bioelectron. 2013;42:225–8.CrossRefGoogle Scholar
  11. 11.
    Wang Y, Zhang C, Chen X, et al. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nano. 2016;8(11):5977–84.Google Scholar
  12. 12.
    Zhao W, Jia W, Sun M, et al. Colorimetric detection of Cu2+ by surface coordination complexes of polyethyleneimine-capped Au nanoparticles. Sensors Actuators B Chem. 2016;223:411–6.CrossRefGoogle Scholar
  13. 13.
    Ge C, Luo Q, Wang D, et al. Colorimetric detection of copper (II) ion using click chemistry and Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme. Anal Chem. 2014;86(13):6387–92.CrossRefGoogle Scholar
  14. 14.
    Shan Z, Lu M, Wang L, et al. Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem Commun. 2016;52(10):2087–90.CrossRefGoogle Scholar
  15. 15.
    Yang W, Chow E, Willett GD, Hibbert DB, Gooding JJ. Exploring the use of the tripeptide Gly–Gly–His as a selective recognition element for the fabrication of electrochemical copper sensors. Analyst. 2003;128(6):712–8.CrossRefGoogle Scholar
  16. 16.
    Su J, Xu J, Chen Y, Xiang Y, Yuan R, Chai Y. Sensitive detection of copper (II) by a commercial glucometer using click chemistry. Biosens Bioelectron. 2013;45:219–22.CrossRefGoogle Scholar
  17. 17.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem. 2001;40(11):2004–21.CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Wang S, Zhang K, Jiang X. Visual detection of copper (II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem. 2008;120(39):7564–6.CrossRefGoogle Scholar
  19. 19.
    Shen Q, Li W, Tang S, et al. A simple “clickable” biosensor for colorimetric detection of copper (II) ions based on unmodified gold nanoparticles. Biosens Bioelectron. 2013;41:663–8.CrossRefGoogle Scholar
  20. 20.
    Song Y, Qu K, Xu C, Ren J, Qu X. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem Commun. 2010;46(35):6572–4.CrossRefGoogle Scholar
  21. 21.
    Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109(5):1948–98.CrossRefGoogle Scholar
  22. 22.
    Achenbach JC, Chiuman W, Cruz RPG, Li Y. DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol. 2004;5(4):321–36.CrossRefGoogle Scholar
  23. 23.
    Huang PJJ, Liu J. An ultrasensitive light-up Cu2+ biosensor using a new DNAzyme cleaving a phosphorothioate-modified substrate. Anal Chem. 2016;88(6):3341–7.CrossRefGoogle Scholar
  24. 24.
    Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc. 2007;129(32):9838–9.CrossRefGoogle Scholar
  25. 25.
    Wang F, Orbach R, Willner I. Detection of metal ions (Cu2+, Hg2+) and cocaine by using ligation DNAzyme machinery. Chem Eur J. 2012;18(50):16030–6.CrossRefGoogle Scholar
  26. 26.
    Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR. Small, highly active DNAs that hydrolyze DNA. J Am Chem Soc. 2013;135(24):9121–9.CrossRefGoogle Scholar
  27. 27.
    Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc. 2004;126(39):12298–305.CrossRefGoogle Scholar
  28. 28.
    Liu J, Brown AK, Meng X, et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A. 2007;104(7):2056–61.CrossRefGoogle Scholar
  29. 29.
    Zhou W, Saran R, Huang PJJ, Ding J, Liu J. An exceptionally selective DNA cooperatively binding two Ca2+ ions. Chembiochem. 2017;18(6):518–22.CrossRefGoogle Scholar
  30. 30.
    Huang PJJ, Vazin M, Lin JJ, Pautler R, Liu J. Distinction of individual lanthanide ions with a DNAzyme beacon array. ACS Sensors. 2016;1(6):732–8.CrossRefGoogle Scholar
  31. 31.
    Freage L, Wang F, Orbach R, Willner I. Multiplexed analysis of genes and of metal ions using enzyme/DNAzyme amplification machineries. Anal Chem. 2014;86(22):11326–33.CrossRefGoogle Scholar
  32. 32.
    Wang F, Elbaz J, Teller C. Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angew Chem. 2011;50(1):295–9.CrossRefGoogle Scholar
  33. 33.
    Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme–DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev. 2014;114(5):2881–941.CrossRefGoogle Scholar
  34. 34.
    Liu S, Cheng C, Gong H, Wang L. Programmable Mg2+-dependent DNAzyme switch by the catalytic hairpin DNA assembly for dual-signal amplification toward homogeneous analysis of protein and DNA. Chem Commun. 2015;51(34):7364–7.CrossRefGoogle Scholar
  35. 35.
    Zhao X-H, Gong L, Zhang X-B, et al. Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection. Anal Chem. 2013;85(7):3614–20.CrossRefGoogle Scholar
  36. 36.
    Breaker RR, Joyce GF. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem Biol. 1995;2(10):655–60.CrossRefGoogle Scholar
  37. 37.
    Qu W, Liu Y, Liu D. Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem. 2011;50(15):3442–5.CrossRefGoogle Scholar
  38. 38.
    Hua C, Zhang WH, De Almeida SRM. A novel route to copper (II) detection using click chemistry-induced aggregation of gold nanoparticles. Analyst. 2012;137(1):82–6.CrossRefGoogle Scholar
  39. 39.
    Yao Z, Yang Y, Chen X, et al. Visual detection of copper (II) ions based on an anionic polythiophene derivative using click chemistry. Anal Chem. 2013;85(12):5650–3.CrossRefGoogle Scholar
  40. 40.
    Evans GW. Copper homeostasis in the mammalian system. Physiol Rev. 1973;53(3):535–70.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina
  2. 2.School of Chemistry and Chemical EngineeringChongqing University of TechnologyChongqingChina

Personalised recommendations