Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6405–6414 | Cite as

Biofluid pretreatment using gradient insulator-based dielectrophoresis: separating cells from biomarkers

Research Paper


Blood is one of the most important biofluids used for clinical diagnostics. Cells and proteins in the blood can provide a rich source of information for the evaluation of human health. Efficient separation of blood components is a necessary process in order to minimize the interference of unwanted components during sensing, separation, and detection. In this paper, an insulator-based gradient dielectrophoretic device has been applied to separate red blood cells from model protein biomarkers for myocardial infarction in buffer. Within one min, red blood cells are largely depleted regardless of the minimum adherence on the channel wall. Considering the adhered red blood cells will not be transported further, a purified protein solution can be delivered for potential downstream processing or detection.

Graphical Abstract


Red blood cell Protein biomarker Dielectrophoresis Separation Purification Myocardial infarction 











Fluorescence intensity


Gradient insulator-based dielectrophoresis


Human heart-type fatty acid binding protein


Myocardial infarction


Human myoglobin


Red blood cell


Region of interest



This work was supported, in part, by the National Institutes of Health grants R21EB010191-02, 1R03AI094193-01, 1R03AI099740-01, and R03AI111361-01.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The study has been approved by ASU Institutional Biosafety Committee and all the experimental procedures were performed in accordance with its ethical standards. There was informed consent for all blood sample used.

Supplementary material

216_2017_582_MOESM1_ESM.pdf (161 kb)
ESM 1 (PDF 161 kb)


  1. 1.
    Toner M, Irimia D. Blood-on-a-chip. Annu Rev Biomed Eng Palo Alto: Annual Reviews. 2005;7:77–103.CrossRefGoogle Scholar
  2. 2.
    Fan R, Vermesh O, Srivastava A, Yen BK, Qin L, Ahmad H, et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol. 2008;26(12):1373–8.CrossRefGoogle Scholar
  3. 3.
    Browne AW, Ramasamy L, Cripe TP, Ahn CH. A lab-on-a-chip for rapid blood separation and quantification of hematocrit and serum analytes. Lab Chip. 2011;11(14):2440–6.CrossRefGoogle Scholar
  4. 4.
    Kersaudy-Kerhoas M, Sollier E. Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip. 2013;13(17):3323–46.CrossRefGoogle Scholar
  5. 5.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.CrossRefGoogle Scholar
  6. 6.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, et al. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412–8.CrossRefGoogle Scholar
  7. 7.
    Yan S, Zhang J, Alici G, Du H, Zhu Y, Li W. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab Chip. 2014;14(16):2993–3003.CrossRefGoogle Scholar
  8. 8.
    Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MP, Jouvet L. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid Nanofluid. 2010;8(1):105–14.CrossRefGoogle Scholar
  9. 9.
    Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73.CrossRefGoogle Scholar
  10. 10.
    Liu Y, Garcia CD, Henry CS. Recent progress in the development of muTAS for clinical analysis. Analyst. 2003;128(8):1002–8.CrossRefGoogle Scholar
  11. 11.
    Huang LR, Cox EC, Austin RH, Sturm JC. Continuous particle separation through deterministic lateral displacement. Science. 2004;304(5673):987–90.CrossRefGoogle Scholar
  12. 12.
    Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, et al. Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci U S A. 2006;103(40):14779–84.CrossRefGoogle Scholar
  13. 13.
    Crowley TA, Pizziconi V. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip. 2005;5(9):922–9.CrossRefGoogle Scholar
  14. 14.
    Thorslund S, Klett O, Nikolajeff F, Markides K, Bergquist J. A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed Microdevices. 2006;8(1):73–9.CrossRefGoogle Scholar
  15. 15.
    Tachi T, Kaji N, Tokeshi M, Baba Y. Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal Chem. 2009;81(8):3194–8.CrossRefGoogle Scholar
  16. 16.
    Yang S, Undar A, Zahn JD. A microfluidic device for continuous, real time blood plasma separation. Lab Chip. 2006;6(7):871–80.CrossRefGoogle Scholar
  17. 17.
    Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9(21):3038–46.CrossRefGoogle Scholar
  18. 18.
    Choi S, Ku T, Song S, Choi C, Park JK. Hydrophoretic high-throughput selection of platelets in physiological shear-stress range. Lab Chip. 2011;11(3):413–8.CrossRefGoogle Scholar
  19. 19.
    Shi J, Mao X, Ahmed D, Colletti A, Huang TJ. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip. 2008;8(2):221–3.CrossRefGoogle Scholar
  20. 20.
    Doria A, Patel M, Lee AP. Rapid blood plasma separation with air-liquid cavity acoustic transducers. Seattle: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2011); 2011.Google Scholar
  21. 21.
    Liu C, Stakenborg T, Peeters S, Lagae L. Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys. 2009;105(10):102014.CrossRefGoogle Scholar
  22. 22.
    Demircan Y, Ozgur E, Kulah H. Dielectrophoresis: applications and future outlook in point of care. Electrophoresis. 2013;34(7):1008–27.CrossRefGoogle Scholar
  23. 23.
    Nakashima Y, Hata S, Yasuda T. Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sens Actuators B Chem. 2010;145(1):561–9.CrossRefGoogle Scholar
  24. 24.
    Yan S, Zhang J, Li M, Alici G, Du H, Sluyter R, et al. On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Sci Rep. 2014;4:5060.CrossRefGoogle Scholar
  25. 25.
    Pysher MD, Hayes MA. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem. 2007;79(12):4552–7.CrossRefGoogle Scholar
  26. 26.
    Jones PV, Staton SJ, Hayes MA. Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem. 2011;401(7):2103–11.CrossRefGoogle Scholar
  27. 27.
    Jones PV, DeMichele AF, Kemp L, Hayes MA. Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis. Anal Bioanal Chem. 2014;406(1):183–92.CrossRefGoogle Scholar
  28. 28.
    Jones PV, Huey S, Davis P, McLemore R, McLaren A, Hayes MA. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance. Analyst. 2015;140(15):5152–61.CrossRefGoogle Scholar
  29. 29.
    Ding J, Lawrence RM, Jones PV, Hogue BG, Hayes MA. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst. 2016;141(6):1997–2008.CrossRefGoogle Scholar
  30. 30.
    Woolley CF, Hayes MA. Sensitive detection of cardiac biomarkers using a magnetic microbead immunoassay. Anal Methods. 2015;7(20):8632–9.CrossRefGoogle Scholar
  31. 31.
    Woolley CF, Hayes MA, Mahanti P, Douglass Gilman S, Taylor T. Theoretical limitations of quantification for noncompetitive sandwich immunoassays. Anal Bioanal Chem. 2015;407(28):8605–15.CrossRefGoogle Scholar
  32. 32.
    Woolley CF. Optimization and ultimate limitations for immunoassay and clinical diagnostics: Arizona State University; 2015.Google Scholar
  33. 33.
    Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde J, Storrow AB, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin Chem. 2007;53(4):552–74.CrossRefGoogle Scholar
  34. 34.
    Woolley CF, Hayes MA. Recent developments in emerging microimmunoassays. Bioanalysis. 2013;5(2):245–64.CrossRefGoogle Scholar
  35. 35.
    Pohl HA. The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys. 1951;22(7):869–71.CrossRefGoogle Scholar
  36. 36.
    Pethig R. Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics. 2010;4(2):022811.CrossRefGoogle Scholar
  37. 37.
    Ermolina I, Morgan H. The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J Colloid Interface Sci. 2005;285(1):419–28.CrossRefGoogle Scholar
  38. 38.
    Staton SJR, Chen KP, Taylor TJ, Pacheco JR, Hayes MA. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Electrophoresis. 2010;31(22):3634–41.CrossRefGoogle Scholar
  39. 39.
    Gallo-Villanueva RC, Perez-Gonzalez VH, Davalos RV, Lapizco-Encinas BH. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Electrophoresis. 2011;32(18):2456–65.CrossRefGoogle Scholar
  40. 40.
    Martinez-Lopez JI, Moncada-Hernandez H, Baylon-Cardiel JL, Martinez-Chapa SO, Rito-Palomares M, Lapizco-Encinas BH. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Anal Bioanal Chem. 2009;394(1):293–302.CrossRefGoogle Scholar
  41. 41.
    Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis. 2011;32(17):2292–7.Google Scholar
  42. 42.
    Turgeon ML. Clinical hematology: theory and procedures: Lippincott Williams & Wilkins; 2005.Google Scholar
  43. 43.
    Pauly H, Schwan HP. Dielectric properties and ion mobility in erythrocytes. Biophys J. 1966;6(5):621–39.CrossRefGoogle Scholar
  44. 44.
    Gascoyne P, Mahidol C, Ruchirawat M, Satayavivad J, Watcharasit P, Becker F. Microsample preparation by dielectrophoresis: isolation of malaria. Lab Chip. 2002;2(2):70–5.CrossRefGoogle Scholar
  45. 45.
    Pethig R. Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells. Crit Rev Biotechnol. 1996;16(4):331–48.CrossRefGoogle Scholar
  46. 46.
    Minerick AR. The rapidly growing field of micro and nanotechnology to measure living cells. AICHE J. 2008;54(9):2230–7.CrossRefGoogle Scholar
  47. 47.
    Srivastava SK, Artemiou A, Minerick AR. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis. 2011;32(18):2530–40.CrossRefGoogle Scholar
  48. 48.
    Gascoyne P, Satayavivad J, Ruchirawat M. Microfluidic approaches to malaria detection. Acta Trop. 2004;89(3):357–69.CrossRefGoogle Scholar
  49. 49.
    Elmadbouh I, Mahfouz R, Bayomy N, Faried W, Ghanayem N. The value of human heart-type fatty acid binding protein in diagnosis of patients with acute chest pain. Egy Heart J. 2012;64(4):179–84.CrossRefGoogle Scholar
  50. 50.
    Erickson HP. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online. 2009;11(1):32–51.CrossRefGoogle Scholar
  51. 51.
    Clarke RW, Piper JD, Ying L, Klenerman D. Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Phys Rev Lett. 2007;98(19):198102.CrossRefGoogle Scholar
  52. 52.
    Turgeon ML. Clinical hematology: theory and procedures. 2004.Google Scholar
  53. 53.
    Mack C. Fundamental principles of optical lithography: the science of microfabrication: Wiley; 2008.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations