Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6379–6386 | Cite as

Functionalization of MgZnO nanorod films and characterization by FTIR microscopic imaging

  • Yuan Chen
  • Qihong Zhang
  • Carol Flach
  • Richard Mendelsohn
  • Elena Galoppini
  • Pavel Ivanoff Reyes
  • Keyang Yang
  • Rui Li
  • Guangyuan Li
  • Yicheng Lu
Research Paper


Metal organic chemical vapor deposition grown films consisting of MgxZn1-xO (4% < x < 5%) nanorod arrays (MgZnOnano) were functionalized with 11-azidoundecanoic acid (1). The MgZnOnano was used instead of pure ZnO to take advantage of the etching resistance of the MgZnOnano during the binding and subsequent sensing device fabrication processes of sensor devices, while the low Mg composition level ensures that selected ZnO properties useful for sensors development, such as piezoelectricity, are retained. Compound 1 was bound to the MgZnOnano surface through the carboxylic acid group, leaving the azido group available for click chemistry and as a convenient infrared spectroscopy (IR) probe. The progress of the functionalization with 1 was characterized by FTIR microscopic imaging as a function of binding time, solvents employed, and MgZnOnano morphology. Binding of 1 was most stable in solutions of 3-methoxypropionitrile (MPN), a non-protic polar solvent. This occurred first in μm-scale islands, then expanded to form a rather uniform layer after 22 h. Binding in alcohols resulted in less homogenous coverage, but the 1/MgZnOnano films prepared from MPN were stable upon treatment with alcohols at room temperature. The binding behavior was significantly dependent on the surface morphology of MgZnOnano.

Graphical abstract

The functionalization of MgZnO nanorod films with a click-ready linker and its dependence on bidning conditions and morphology has been studied by FTIR microscopic imaging using the azido group as the IR tag


Zinc oxide Magnesium zinc oxide Surface functionalization FTIR microscopic imaging 



The authors gratefully acknowledge support of this research by the National Science Foundations through a NSF-CBET collaborative research grant (Grant Number 1264488) and NSF-CBET (Grant Number 1264508).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

Supplementary material

216_2017_577_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1176 kb)


  1. 1.
    Niskanen M, Kuisma M, Cramariuc O, Golovanov V, Hukka TI, Tkachenko N, et al. Porphyrin adsorbed on the (1010) surface of the wurtzite structure of ZnO–conformation induced effects on the electron transfer characteristics. Phys Chem Chem Phys. 2013;15(40):17408–18.CrossRefGoogle Scholar
  2. 2.
    Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc. 2009;131(40):14290–8.CrossRefGoogle Scholar
  3. 3.
    Persson P, Lunell S, Ojamäe L. Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO (1010) surfaces. Int J Quantum Chem. 2002;89(3):172–80.CrossRefGoogle Scholar
  4. 4.
    Gonzalez-Valls I, Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci. 2009;2(1):19–34.CrossRefGoogle Scholar
  5. 5.
    Hakola H, Sariola-Leikas E, Efimov A, Tkachenko NV. Effect of hole transporting material on charge transfer processes in zinc phthalocyanine sensitized ZnO nanorods. J Phys Chem C. 2016;120(13):7044–51.CrossRefGoogle Scholar
  6. 6.
    Song J, Kulinich SA, Yan J, Li Z, He J, Kan C, et al. Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters. Adv Mater. 2013;25(40):5750–5.CrossRefGoogle Scholar
  7. 7.
    Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, et al. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun. 2012;48(23):2858–60.CrossRefGoogle Scholar
  8. 8.
    Mishra YK, Modi G, Cretu V, Postica V, Lupan O, Reimer T, et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl Mater Interfaces. 2015;7(26):14303–16.CrossRefGoogle Scholar
  9. 9.
    Kumar N, Dorfman A, Hahm J-I. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays. Nanotechnology. 2006;17(12):2875–81.CrossRefGoogle Scholar
  10. 10.
    Zhou J, Gu Y, Hu Y, Mai W, Yeh P-H, Bao G, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl Phys Lett. 2009;94(19):191103–3.Google Scholar
  11. 11.
    Menzel A, Subannajui K, Güder F, Moser D, Paul O, Zacharias M. Multifunctional ZnO-nanowire-based sensor. Adv Funct Mater. 2011;21(22):4342–8.CrossRefGoogle Scholar
  12. 12.
    Wang ZL. ZnO nanowire and nanobelt platform for nanotechnology. Mater Sci Eng R Rep. 2009;64(3):33–71.CrossRefGoogle Scholar
  13. 13.
    Chandiran AK, Abdi-Jalebi M, Nazeeruddin MK, Grätzel M. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano. 2014;8(3):2261–8.CrossRefGoogle Scholar
  14. 14.
    Asbury JB, Hao E, Wang Y, Ghosh HN, Lian T. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J Phys Chem B. 2001;105(20):4545–57.CrossRefGoogle Scholar
  15. 15.
    Bandara J, Tennakone K, Jayatilaka P. Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes. Chemosphere. 2002;49(4):439–45.CrossRefGoogle Scholar
  16. 16.
    Braid JL, Koldemir U, Sellinger A, Collins RT, Furtak TE, Olson DC. Conjugated phosphonic acid modified zinc oxide electron transport layers for improved performance in organic solar cells. ACS Appl Mater Interfaces. 2014;6(21):19229–34.CrossRefGoogle Scholar
  17. 17.
    Huss AS, Bierbaum A, Chitta R, Ceckanowicz DJ, Mann KR, Gladfelter WL, et al. Tuning electron transfer rates via systematic shifts in the acceptor state density using size-selected ZnO colloids. J Am Chem Soc. 2010;132(40):13963–5.CrossRefGoogle Scholar
  18. 18.
    Morkoç H, Özgür Ü. Zinc oxide: fundamentals, materials and device technology: John Wiley & Sons; 2008.Google Scholar
  19. 19.
    Briscoe J, Dunn S. Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano Energy. 2015;14:15–29.CrossRefGoogle Scholar
  20. 20.
    Emanetoglu NW, Gorla C, Liu Y, Liang S, Lu Y. Epitaxial ZnO piezoelectric thin films for saw filters. Mater Sci Semicond Process. 1999;2(3):247–52.CrossRefGoogle Scholar
  21. 21.
    Ip K, Frazier RM, Heo YW, Norton DP, Abernathy CR, Pearton SJ, et al. Ferromagnetism in Mn- and Co-implanted ZnO nanorods. J Vac Sci Technol B Microelectron Nanometer Struct. 2003;21(4):1476.CrossRefGoogle Scholar
  22. 22.
    Onodera A, Tamaki N, Jin K, Yamashita H. Ferroelectric properties in piezoelectric semiconductor Zn1-xMxO (M=Li, Mg). Jpn J Appl Phys. 1997;36(Part 1, NO. 9B):6008–11.Google Scholar
  23. 23.
    Cao Y, Galoppini E, Reyes PI, Duan Z, Lu Y. Morphology effects on the biofunctionalization of nanostructured ZnO. Langmuir. 2012;28(21):7947–51.CrossRefGoogle Scholar
  24. 24.
    Ruther RE, Franking R, Huhn AM, Gomez-Zayas J, Hamers RJ. Formation of smooth, conformal molecular layers on ZnO surfaces via photochemical grafting. Langmuir. 2011;27(17):10604–14.CrossRefGoogle Scholar
  25. 25.
    Taratula O, Galoppini E, Wang D, Chu D, Zhang Z, Chen H, et al. Binding studies of molecular linkers to ZnO and MgZnO nanotip films. J Phys Chem B. 2006;110(13):6506–15.CrossRefGoogle Scholar
  26. 26.
    Cao Y, Galoppini E, Reyes PI, Lu Y. Functionalization of nanostructured ZnO films by copper-free click reaction. Langmuir. 2013;29(25):7768–75.CrossRefGoogle Scholar
  27. 27.
    Taratula O, Galoppini E, Mendelsohn R, Reyes PI, Zhang Z, Duan Z, et al. Stepwise functionalization of ZnO nanotips with DNA. Langmuir. 2009;25(4):2107–13.CrossRefGoogle Scholar
  28. 28.
    Reyes PI, Zhang Z, Chen H, Duan Z, Zhong J, Saraf G, et al. A ZnO nanostructure-based quartz crystal microbalance device for biochemical sensing. IEEE Sensors J. 2009;9(10):1302–7.CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Saad P, Mao G, Walters RM, Correa MCM, Mendelsohn R, et al. Infrared spectroscopic imaging tracks lateral distribution in human stratum corneum. Pharm Res. 2014;31(10):2762–73.CrossRefGoogle Scholar
  30. 30.
    Brenner TM, Flores TA, Ndione PF, Meinig EP, Chen G, Olson DC, et al. Etch-resistant Zn1-xMgxO alloys: an alternative to ZnO for carboxylic acid surface modification. J Phys Chem C. 2014;118(24):12599–607.CrossRefGoogle Scholar
  31. 31.
    Yang J, Lin Y, Meng Y. Effects of dye etching on the morphology and performance of ZnO nanorod dye-sensitized solar cells. Korean J Chem Eng. 2013;30(11):2026–9.CrossRefGoogle Scholar
  32. 32.
    Torbrügge S, Ostendorf F, Reichling M. Stabilization of zinc-terminated ZnO (0001) by a modified surface stoichiometry. J Phys Chem C. 2009;113(12):4909–14.CrossRefGoogle Scholar
  33. 33.
    Luo B, Rossini JE, Gladfelter WL. Zinc oxide nanocrystals stabilized by alkylammonium alkylcarbamates. Langmuir. 2009;25(22):13133–41.CrossRefGoogle Scholar
  34. 34.
    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, et al. MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl Phys Lett. 1998;72(19):2466–8.CrossRefGoogle Scholar
  35. 35.
    MacPhail R, Strauss H, Snyder R, Elliger C. CH stretching modes and the structure of n-alkyl chains. II: long, all-trans chains. J Phys Chem. 1984;88(3):334–41.CrossRefGoogle Scholar
  36. 36.
    Snyder R, Strauss H, Elliger C. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J Phys Chem. 1982;86(26):5145–50.CrossRefGoogle Scholar
  37. 37.
    Wolfshorndl MP, Baskin R, Dhawan I, Londergan CH. Covalently bound azido groups are very specific water sensors, even in hydrogen-bonding environments. J Phys Chem B. 2012;116(3):1172–9.CrossRefGoogle Scholar
  38. 38.
    Qu Q, Geng H, Peng R, Cui Q, Gu X, Li F, et al. Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy. Langmuir. 2010;26(12):9539–46.CrossRefGoogle Scholar
  39. 39.
    Rossini JE, Huss AS, Bohnsack JN, Blank DA, Mann KR, Gladfelter WL. Binding and static quenching behavior of a terthiophene carboxylate on monodispersed zinc oxide nanocrystals. J Phys Chem C. 2011;115(1):11–7.CrossRefGoogle Scholar
  40. 40.
    Boschloo G, Häggman L, Hagfeldt A. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B. 2006;110(26):13144–50.CrossRefGoogle Scholar
  41. 41.
    Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc. 2009;131(35):12540–1.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuan Chen
    • 1
  • Qihong Zhang
    • 1
  • Carol Flach
    • 1
  • Richard Mendelsohn
    • 1
  • Elena Galoppini
    • 1
  • Pavel Ivanoff Reyes
    • 2
  • Keyang Yang
    • 2
  • Rui Li
    • 2
  • Guangyuan Li
    • 2
  • Yicheng Lu
    • 2
  1. 1.Department of Chemistry, RutgersThe State University of New JerseyNewarkUSA
  2. 2.Department of Electrical and Computer Engineering, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations