Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6371–6377 | Cite as

Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer

  • Yanyan Li
  • Manru Zhao
  • Haiyan Wang
Research Paper

Abstract

We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer–DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.

Keywords

Label-free Peptide aptamer TNT Ternary assembly layer 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 21345004), the Foundation for Innovation Team of Bioanalytical Chemistry of Anhui Normal University, and the project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhou L, Wang JP, Li DJ, Li YB. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014;162(11):34–40.CrossRefGoogle Scholar
  2. 2.
    Khezrian S, Salimi A, Teymourian H, Hallaj R. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens Bioelectron. 2013;43:218–25.CrossRefGoogle Scholar
  3. 3.
    Bai HY, Campo FJD, Tsai YC. Sensitive electrochemical thrombin aptasensor based on gold disk microelectrode arrays. Biosens Bioelectron. 2013;42:17–22.CrossRefGoogle Scholar
  4. 4.
    Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, et al. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxylpheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron. 2015;64:147–53.CrossRefGoogle Scholar
  5. 5.
    Liu QY, Yang YT, Lv XT, Ding YN, Zhang YZ, Jing JJ, et al. One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem. 2017;240:726–34.CrossRefGoogle Scholar
  6. 6.
    Liu QY, Chen PP, Xu Z, Chen MM, Ding YN, Yue K, et al. A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sensors Actuators B Chem. 2017;251:339–48.CrossRefGoogle Scholar
  7. 7.
    Sun LF, Ding YY, Jiang YL, Liu QY. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors Actuators B Chem. 2017;239:848–56.CrossRefGoogle Scholar
  8. 8.
    Fang XH, Tan WH. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43(1):48–57.CrossRefGoogle Scholar
  9. 9.
    Eissa S, Siaj M, Zourob M. Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron. 2015;69:148–54.CrossRefGoogle Scholar
  10. 10.
    Zhao BJ, Wu P, Zhang H, Cai CX. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron. 2015;68:763–70.CrossRefGoogle Scholar
  11. 11.
    Guo WJ, Sun N, Qin XL, Pei MS, Wang LY. A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs–HMIMPF6 and nanoporous PtTi alloy. Biosens Bioelectron. 2015;74:691–7.CrossRefGoogle Scholar
  12. 12.
    Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.CrossRefGoogle Scholar
  13. 13.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.CrossRefGoogle Scholar
  14. 14.
    Lian Y, He FJ, Wang H, Tong FF. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosens Bioelectron. 2015;65:314–9.CrossRefGoogle Scholar
  15. 15.
    Li H, Li WW, Liu FZ, Wang ZX, Li GX, Karamanos Y. Detection of tumor invasive biomarker using a peptamer of signal conversion and signal amplification. Anal Chem. 2016;88:3662–8.CrossRefGoogle Scholar
  16. 16.
    Yu YQ, Cao Q, Zhou M, Cui H. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron. 2013;43:137–42.CrossRefGoogle Scholar
  17. 17.
    Jaworski JW, Raorane D, Huh JH, Majumdar A, Lee SW. Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir. 2008;24(9):4938–43.CrossRefGoogle Scholar
  18. 18.
    Capaldo P, Alfarano SR, Ianeselli L, Zilio SD, Bosco A, Parisse P, et al. Circulating disease biomarker detection in complex matrices: real-time, in situ measurements of DNA/miRNA hybridization via electrochemical impedance spectroscopy. ACS Sensors. 2016;1(8):1003–10.CrossRefGoogle Scholar
  19. 19.
    Wu J, Campuzano S, Halford C, Haake DA, Wang J. Ternary surface monolayers for ultrasensitive (zeptomole) aperometric detection of nucleic acid hybridization without signal amplification. Anal Chem. 2010;82(21):8830–7.CrossRefGoogle Scholar
  20. 20.
    Gaurav D, Malik AK, Rai PK. Development of a new SPME–HPLC–UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. J Hazard Mater. 2009;172(2-3):1652–8.CrossRefGoogle Scholar
  21. 21.
    Gaurav, Kaur V, Kumar A, Malik AK, Rai PK. SPME-HPLC: a new approach to the analysis of explosives. J Hazard Mater. 2007;147(3):691–7.CrossRefGoogle Scholar
  22. 22.
    Zhang BH, Pan XP, Smith JN, Anderson TA, Cobb GP. Extraction and determination of trace amounts of energetic compounds in blood by gas chromatography with electron capture detection (GC/ECD). Talanta. 2007;72(2):612–9.CrossRefGoogle Scholar
  23. 23.
    Berg M, Bolotin J, Hofstetter TB. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS. Anal Chem. 2007;79(6):2386–93.CrossRefGoogle Scholar
  24. 24.
    Kjellstrom A, Brantlind M, Eldsater C. Optimized microwave extraction for trace detection of 2,4,6-trinitrotoluene in soil samples. Chemosphere. 2008;71(9):1701–8.CrossRefGoogle Scholar
  25. 25.
    Najarro M, Morris MED, Staymates ME, Fletcher R, Gillen G. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst. 2012;137(11):2614–22.CrossRefGoogle Scholar
  26. 26.
    Bromage ES, Vadas GG, Harvey E, Unger MA, Kaattari SL. Validation of an antibody-based biosensor for rapid quantification of 2,4,6-trinitrotoluene (TNT) contamination in ground water and river water. Environ Sci Technol. 2007;41(20):7067–72.CrossRefGoogle Scholar
  27. 27.
    Liu J, Yang SH, Li FY, Dong LJ, Liu JJ, Wang XY, et al. Highly fluorescent polymeric nanoparticles based on melamine for facile detection of TNT in soil. J Mater Chem A. 2015;3(18):10069–76.CrossRefGoogle Scholar
  28. 28.
    Sabherwal P, Shorie M, Pathania P, Chaudhary S, Bhasin KK, Bhalla V, et al. Hybrid aptamer-antibody linked fluorescence resonance energy transfer based detection of trinitrotoluene. Anal Chem. 2014;86(15):7200–4.CrossRefGoogle Scholar
  29. 29.
    Li GX, Yu XX, Liu DQ, Liu XY, Li F, Cui H. Label-free electrochemiluminescence aptasensor for 2,4,6-trinitrotoluene based on bilayer structure of luminescence functionalized graphene hybrids. Anal Chem. 2015;87(21):10976–81.CrossRefGoogle Scholar
  30. 30.
    Yi KY. Application of CdSe quantum dots for the direct detection of TNT. Forensic Sci Int. 2016;259(3):101–5.CrossRefGoogle Scholar
  31. 31.
    Wang YT, Feng JJ, Tan ZA, Wang HY. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosens Bioelectron. 2014;60:218–23.CrossRefGoogle Scholar
  32. 32.
    MacDairmid AR, Gallagher MC, Banks JT. Structure of dithiothreitol monolayers on Au(111). J Phys Chem B. 2003;107(36):9789–92.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Chemobiosensing, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuChina

Personalised recommendations