Skip to main content

Gold nanoparticle-based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection

Abstract

We describe the engineering of stable gold nanoparticle (AuNP) bioconjugates for the detection of staphylococcal enterotoxin A (SEA) using localized surface plasmon resonance (LSPR). Two types of AuNP bioconjugates were prepared by covalently attaching anti-SEA antibody (Ab) or SEA to AuNPs. This was achieved by reacting Traut’s reagent with lysine residues of both proteins to generate thiol groups that bind to gold atoms on the AuNP surface. These bioconjugates were characterized in-depth by absorption spectroscopy, cryo-transmission electron microscopy, dynamic light scattering, and zeta potential measurements. Their stability over time was assessed after 1 year storage in the refrigerator at 4 °C. Two formats of homogeneous binding assays were set up on the basis of monitoring of LSPR peak shifts resulting from the immunological reaction between the (i) immobilized antibody and free SEA, the direct assay, or (ii) immobilized SEA and free antibody, the competitive assay. In both formats, a correlation between the LSPR band shift and SEA concentration could be established. Though the competitive format did not meet the expected analytical performance, the direct format, the implementation of which was very simple, afforded a specific and sensitive response within a broad dynamic range—nanogram per milliliter to microgram per milliliter. The limit of detection (LOD) of SEA was estimated to equal 5 ng/mL, which was substantially lower than the LOD obtained using a quartz crystal microbalance. Moreover, the analytical performance of AuNP-Ab bioconjugate was preserved after 1 year of storage at 4 °C. Finally, the LSPR biosensor was successfully applied to the detection of SEA in milk samples. The homogeneous nanoplasmonic immunosensor described herein provides an attractive alternative for stable and reliable detection of SEA in the nanogram per milliliter range and offers a promising avenue for rapid, easy to implement, and sensitive biotoxin detection.

Sensitive LSPR Biosensing of SEA in buffer and milk using stable AuNP-Antibody bioconjugates

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hennekinne J-A, De Buyser M-L, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36:815–36.

    CAS  Article  Google Scholar 

  2. Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003;2(1):63–76.

    Google Scholar 

  3. Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev. 2012;41(7):2849–66. doi:10.1039/C1CS15280G.

    CAS  Article  Google Scholar 

  4. Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111(6):3828–57. doi:10.1021/cr100313v.

    CAS  Article  Google Scholar 

  5. Sepulveda B, Angelome PC, Lechuga LM, Liz-Marzan LM. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–51. doi:10.1016/j.nantod.2009.04.001.

    CAS  Article  Google Scholar 

  6. Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H. Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem. 2010;118(2):462–6. doi:10.1016/j.foodchem.2009.04.106.

    CAS  Article  Google Scholar 

  7. Wang WB, Liu LQ, Xu LG, Kuang H, Zhu JP, Xu CL. Gold-nanoparticle-based multiplexed immunochromatographic strip for simultaneous detection of staphylococcal enterotoxin A, B, C, D, and E. Part Part Syst Charact. 2016;33(7):388–95. doi:10.1002/ppsc.201500219.

    CAS  Article  Google Scholar 

  8. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123(7):1599–603. doi:10.1039/A804010I.

    CAS  Article  Google Scholar 

  9. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, et al. A label-free immunoassay based upon localized surface plasmon resonance of gold Nanorods. ACS Nano. 2008;2(4):687–92. doi:10.1021/nn7003734.

  10. Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem. 2004;76(18):5370–8. doi:10.1021/ac049741z.

    CAS  Article  Google Scholar 

  11. Liu XH, Wang Y, Chen P, Wang YS, Mang JL, Aili D, et al. Biofunctionalized gold nanoparticles for colorimetric sensing of Botulinum neurotoxin A light chain. Anal Chem. 2014;86(5):2345–52. doi:10.1021/ac402626g.

  12. Zhao W, Brook MA, Li Y. Design of Gold Nanoparticle-Based Colorimetric biosensing assays. Chembiochem. 2008;9(15):2363–71. doi:10.1002/cbic.200800282.

    CAS  Article  Google Scholar 

  13. Montenegro J-M, Grazu V, Sukhanova A, Agarwal S, de la Fuente JM, Nabiev I, et al. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev. 2013;65(5):677–88. doi:10.1016/j.addr.2012.12.003.

  14. Wang Z, Ma L. Gold nanoparticle probes. Coord Chem Rev. 2009;253(11–12):1607–18. doi:10.1016/j.ccr.2009.01.005.

    CAS  Article  Google Scholar 

  15. Wang X, Mei Z, Wang Y, Tang L. Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies. Beilstein J Nanotechnol. 2017;8:372–80. doi:10.3762/bjnano.8.39.

    CAS  Article  Google Scholar 

  16. Boujday S, Bantegnie A, Briand E, Marnet P-G, Salmain M, Pradier C-M. In-depth investigation of protein adsorption on gold surfaces: correlating the structure and density to the efficiency of the sensing layer. J Phys Chem B. 2008;112(21):6708–15.

    CAS  Article  Google Scholar 

  17. Wang X, Mei Z, Wang Y, Tang L. Gold nanorod biochip functionalization by antibody thiolation. Talanta. 2015;136:1–8. doi:10.1016/j.talanta.2014.11.023.

    CAS  Article  Google Scholar 

  18. Slot JW, Geuze HJ. A method to prepare isodisperse colloidal gold sols in the size range 3–17 NM. Ultramicroscopy. 1984;15(4):383. doi:10.1016/0304-3991(84)90144-X.

    Article  Google Scholar 

  19. Ben Haddada M, Huebner M, Casale S, Knopp D, Niessner R, Salmain M, et al. Gold nanoparticles assembly on silicon and gold surfaces: mechanism, stability, and efficiency in diclofenac biosensing. J Phys Chem C. 2016;120:29302–11.

  20. Dixit CK, Kaushik A. Nano-structured arrays for multiplex analyses and lab-on-a-chip applications. Biochem Biophys Res Commun. 2012;419(2):316–20. doi:10.1016/j.bbrc.2012.02.018.

    CAS  Article  Google Scholar 

  21. Sule Shantanu V, Sukumar M, Weiss William F IV, Marcelino-Cruz Anna M, Sample T, Tessier Peter M. High-throughput analysis of concentration-dependent antibody self-association. Biophys J. 2011;101(7):1749–57. doi:10.1016/j.bpj.2011.08.036.

    CAS  Article  Google Scholar 

  22. Hermanson GT. Chapter 1—functional targets. In: bioconjugate techniques. Second ed. New York: Academic Press; 2008. p. 1–168. doi:10.1016/B978-0-12-370501-3.00001-1.

    Google Scholar 

  23. Hermanson GT. Chapter 24—Preparation of colloidal gold-labeled proteins. In: Hermanson GT, editor. Bioconjugate techniques. Second ed. New York: Academic Press; 2007. p. 924–35. doi:10.1016/B978-0-12-370501-3.00024-2.

  24. Chen P, Liedberg B. Curvature of the localized surface plasmon resonance peak. Anal Chem. 2014;86(15):7399–405. doi:10.1021/ac500883x.

    CAS  Article  Google Scholar 

  25. Xia H, Xiahou Y, Zhang P, Ding W, Wang D. Revitalizing the Frens method to synthesize uniform, quasi-spherical gold nanoparticles with deliberately regulated sizes from 2 to 330 nm. Langmuir. 2016;32(23):5870–80. doi:10.1021/acs.langmuir.6b01312.

    CAS  Article  Google Scholar 

  26. Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1915):1333–83. doi:10.1098/rsta.2009.0273.

    CAS  Article  Google Scholar 

  27. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, et al. Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods. 2010;356(1–2):60–9. doi:10.1016/j.jim.2010.02.007.

  28. Klein JS, Gnanapragasam PNP, Galimidi RP, Foglesong CP, West AP, Bjorkman PJ. Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci. 2009;106(18):7385–90. doi:10.1073/pnas.0811427106.

    CAS  Article  Google Scholar 

  29. Hinterwirth H, Stübiger G, Lindner W, Lämmerhofer M. Gold nanoparticle-conjugated anti-oxidized low-density lipoprotein antibodies for targeted Lipidomics of oxidative stress biomarkers. Anal Chem. 2013;85(17):8376–84. doi:10.1021/ac401778f.

    CAS  Article  Google Scholar 

  30. Yang WJ, Trau D, Renneberg R, Yu NT, Caruso F. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications. J Colloid Interface Sci. 2001;234(2):356–62. doi:10.1006/jcis.2000.7325.

    CAS  Article  Google Scholar 

  31. Geoghegan WD. The effect of three variables on adsorption of rabbit IgG to colloidal gold. J Histochem Cytochem. 1988;36(4):401–7. doi:10.1177/36.4.3346540.

    CAS  Article  Google Scholar 

  32. Liu X, Huo Q. A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J Immunol Methods. 2009;349(1–2):38–44. doi:10.1016/j.jim.2009.07.015.

    CAS  Article  Google Scholar 

  33. Tsai CS, Yu TB, Chen CT. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions. Chem Commun. 2005;34:4273–5. doi:10.1039/b507237a.

    Article  Google Scholar 

  34. Salmain M, Ghasemi M, Boujday S, Pradier CM. Elaboration of a reusable immunosensor for the detection of staphylococcal enterotoxin A (SEA) in milk with a quartz crystal microbalance. Sens Actuator B Chem. 2012;173:148–56. doi:10.1016/j.snb.2012.06.052.

    CAS  Article  Google Scholar 

  35. Salmain M, Ghasemi M, Boujday S, Spadavecchia J, Techer C, Val F, et al. Piezoelectric immunosensor for direct and rapid detection of staphylococcal enterotoxin A (SEA) at the ng level. Biosens Bioelectron. 2011;29(1):140–4. doi:10.1016/j.bios.2011.08.007.

Download references

Acknowledgements

We would like to thank the DIM Analytics and Region Ile-de-France for M. Ben Haddada PhD scholarship. We also thank Anton Paar for the access to Litesizer™ 500 apparatus. This work was supported by the iFood initiative Nanyang Technological University, by the French-Singaporean PHC Merlion program (grant 5.03.15), and by the ANR-FWF program (grant ANR-15-CE29-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhir Boujday.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 633 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben Haddada, M., Hu, D., Salmain, M. et al. Gold nanoparticle-based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection. Anal Bioanal Chem 409, 6227–6234 (2017). https://doi.org/10.1007/s00216-017-0563-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0563-8

Keywords

  • Immunosensor
  • Localized surface plasmon resonance
  • Staphylococcal enterotoxin A
  • Gold nanoparticles