Quality control of digital PCR assays and platforms

Abstract

Digital polymerase chain reaction (digital PCR, dPCR) is a direct nucleic acid quantification method, thus requiring no standard curves unlike quantitative real-time PCR (qPCR). Nevertheless, evaluation of the linear dynamic range, accuracy, and precision of an assay or platform is recommended, as there are several potential causes of important non-linearity, bias, and imprecision. Ignoring these quality issues may lead to erroneous quantification. This necessitates an approach akin to the construction of standard curves. We study the pitfalls associated with the evaluation of such an experiment, and provide guidelines for the assessment of linearity, accuracy, and precision in dPCR experiments. We present simulation results and a case study supporting the importance of a thorough evaluation. Further, typically presented plots and statistics may not reveal problems with linearity, accuracy, or precision. We find that a robust weighted least-squares approach is highly advisable, yet may also suffer from an inflated false-positive rate. The proposed assessments are also applicable to other analyses, such as the comparison of results obtained from qPCR and dPCR. A web tool for quality evaluation, dPCalibRate, is available.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Bio/Technol. 1992;10(4):413–7.

    CAS  Article  Google Scholar 

  2. 2.

    Baker M. Digital PCR hits its stride. Nat Methods. 2012;9(6):541.

    CAS  Article  Google Scholar 

  3. 3.

    Corbisier P, Bhat S, Partis L, Xie VRD, Emslie K. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem. 2010;396(6):2143–50.

    CAS  Article  Google Scholar 

  4. 4.

    Doi H, Uchii K, Takahara T, Matsuhashi S, Yamanaka H, Minamoto T. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PloS one. 2015;10(3):e0122763.

    Article  Google Scholar 

  5. 5.

    Li N, Ma J, Guarnera MA, Fang H, Cai L, Jiang F. Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. J Cancer Res Clin. 2014;140(1):145–50.

    CAS  Article  Google Scholar 

  6. 6.

    Morisset D, Stebih D, Milavec M, Gruden K, Zel J. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One. 2013;8(5):e62583.

    CAS  Article  Google Scholar 

  7. 7.

    Vynck M, Trypsteen W, Thas O, Vandekerckhove L, De Spiegelaere W. The future of digital polymerase chain reaction in virology. Mol Diagn Ther. 2016;20(5):437–47.

    CAS  Article  Google Scholar 

  8. 8.

    Bustin S, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Vandesompele J. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55(4):611–22.

    CAS  Article  Google Scholar 

  9. 9.

    Jones GM, Busby E, Garson JA, Grant PR, Nastouli a. E., Devonshire AS, Whale AS. Digital PCR dynamic range is approaching that of real-time quantitative PCR. Biomol Detect Quantif. 2016;10:31–3.

    CAS  Article  Google Scholar 

  10. 10.

    Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Pfaffl MW. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59 (6):892–902.

    CAS  Article  Google Scholar 

  11. 11.

    Verhaegen B, De Reu K, De Zutter L, Verstraete K, Heyndrickx M, Van Coillie E. Comparison of droplet digital PCR and qPCR for the quantification of shiga toxin-producing Escherichia coli in bovine feces. Toxins. 2016;8(5):157.

    Article  Google Scholar 

  12. 12.

    Pavsic J, Zel J, Milavec M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Anal Bioanal Chem. 2016;408(1):107–21.

    CAS  Article  Google Scholar 

  13. 13.

    Arvia R, Sollai M, Pierucci F, Urso C, Massi D, Zakrzewska K. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in forMalin fixed paraffin embedded (FFPE) cutaneous biopsies. J Virol Methods. 2017;246:15–20.

    CAS  Article  Google Scholar 

  14. 14.

    Bustin S. The continuing problem of poor transparency of reporting and use of inappropriate methods for RT-qPCR. Biomol Detect Quantif. 2017;12:7–9.

    Article  Google Scholar 

  15. 15.

    Bustin S. The reproducibility of biomedical research: sleepers awake! Biomol Detect Quantif. 2014;2:35–42.

  16. 16.

    White H. A heteroskedastic-consistent covariance matrix estimator and a direct test of heteroskedasticity. Econometrica. 1980;48(4):817–38.

    Article  Google Scholar 

  17. 17.

    MacKinnon JG, White H. Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. J Econ. 1985;29(3):305–25.

    Article  Google Scholar 

  18. 18.

    Carroll RJ, Cline DBH. An asymptotic theory for weighted least squares with weights estimated by replication. Biometrika. 1988;75(1):35–43.

    Article  Google Scholar 

  19. 19.

    Long JS, Ervin LH. Using heteroscedasticity consistent standard errors in the linear regression model. Am Stat. 2000;54(3):217– 24.

    Google Scholar 

  20. 20.

    Wald A, Wolfowitz J. On a test whether two samples are from the same population. Ann Math Stat. 1940; 11:147–62.

    Article  Google Scholar 

  21. 21.

    Bassham LE, Rukhin AL, Soto J, Nechvatal JR, Smid ME, Barker EB, Vo S. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Gaithersburg, MD: National Institute of Standards and Technology; 2010.

    Google Scholar 

  22. 22.

    Kutner MH, Nachtsheim CJ, Neter J, Li W. Diagnostics and remedial measures. Applied Linear Statistical Models. 5th ed. New York: McGraw-Hill; 2005. p. 100–53.

  23. 23.

    Opel KL, Chung D, McCord BR. A study of PCR inhibition mechanisms using real-time PCR. J Forensic Sci. 2010;55(1):25–33.

    CAS  Article  Google Scholar 

  24. 24.

    Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79–88.

    CAS  Article  Google Scholar 

  25. 25.

    Jacobs BK, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinforma. 2014;15(1):283.

    Article  Google Scholar 

  26. 26.

    Harwood VJ, Stoeckel DM. Chapter 2: Performance criteria. Microbial Source Tracking: Methods, Applications, and Case Studies. In: Charles H, Blanch AR, and Harwood VJ, editors. Springer Science and Business Media; 2011.

  27. 27.

    Racki N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods. 2014;10(1):42.

    Article  Google Scholar 

  28. 28.

    Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, Caliendo AM. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol. 2013;51(2): 540–6.

    CAS  Article  Google Scholar 

  29. 29.

    McKay AT. Distribution of the coefficient of variation and the extended t distribution. J R Stat Soc. 1932;95: 695–8.

    Article  Google Scholar 

  30. 30.

    Center for Drug Evaluation and Research (CDER). Guidance for Industry: Bioanalytical Method Evaluation. 2001.

  31. 31.

    Clinical and Laboratory Standards Institute. EP05-A3: Evaluation of Precision of Quantitative Measurement Procedures, 3rd Edition. 2014. Clinical and Laboratory Standards Institute, Wayne, PA.

  32. 32.

    Environmental Protection Agency (EPA), FEM Microbiology Action Team. Method Validation of U.S. Environmental Protection Agency Microbiological Methods of Analysis. 2009.

  33. 33.

    Food and Agricultural Organization. Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods CAC/GL 74-2010. 2010.

  34. 34.

    Clinical and Laboratory Standards Institute. EP06-A: Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach. 2003. Clinical and Laboratory Standards Institute, Wayne, PA.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthijs Vynck.

Ethics declarations

Conflict of interests

Biogazelle provided support in the form of salaries for JV, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. MV and OT have no conflicts of interest to declare.

Additional information

Supplementary material

Electronic Supplementary Material 1 (ESM1) contains additional details on data simulation, comparison of different linear model fitting procedures and full analysis results.

Data availability

All data and code needed to reproduce our analyses is available at https://github.com/CenterForStatistics-UGent/dPCalibRate.

Funding

Unfunded.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 495 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vynck, M., Vandesompele, J. & Thas, O. Quality control of digital PCR assays and platforms. Anal Bioanal Chem 409, 5919–5931 (2017). https://doi.org/10.1007/s00216-017-0538-9

Download citation

Keywords

  • Digital PCR
  • Quality control
  • Linearity
  • Accuracy
  • Precision