Analytical and Bioanalytical Chemistry

, Volume 409, Issue 25, pp 5919–5931 | Cite as

Quality control of digital PCR assays and platforms

  • Matthijs VynckEmail author
  • Jo Vandesompele
  • Olivier Thas
Paper in Forefront


Digital polymerase chain reaction (digital PCR, dPCR) is a direct nucleic acid quantification method, thus requiring no standard curves unlike quantitative real-time PCR (qPCR). Nevertheless, evaluation of the linear dynamic range, accuracy, and precision of an assay or platform is recommended, as there are several potential causes of important non-linearity, bias, and imprecision. Ignoring these quality issues may lead to erroneous quantification. This necessitates an approach akin to the construction of standard curves. We study the pitfalls associated with the evaluation of such an experiment, and provide guidelines for the assessment of linearity, accuracy, and precision in dPCR experiments. We present simulation results and a case study supporting the importance of a thorough evaluation. Further, typically presented plots and statistics may not reveal problems with linearity, accuracy, or precision. We find that a robust weighted least-squares approach is highly advisable, yet may also suffer from an inflated false-positive rate. The proposed assessments are also applicable to other analyses, such as the comparison of results obtained from qPCR and dPCR. A web tool for quality evaluation, dPCalibRate, is available.


Digital PCR Quality control Linearity Accuracy Precision 


Compliance with Ethical Standards

Conflict of interests

Biogazelle provided support in the form of salaries for JV, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. MV and OT have no conflicts of interest to declare.

Supplementary material

216_2017_538_MOESM1_ESM.pdf (495 kb)
(PDF 495 KB)


  1. 1.
    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Bio/Technol. 1992;10(4):413–7.CrossRefGoogle Scholar
  2. 2.
    Baker M. Digital PCR hits its stride. Nat Methods. 2012;9(6):541.CrossRefGoogle Scholar
  3. 3.
    Corbisier P, Bhat S, Partis L, Xie VRD, Emslie K. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal Bioanal Chem. 2010;396(6):2143–50.CrossRefGoogle Scholar
  4. 4.
    Doi H, Uchii K, Takahara T, Matsuhashi S, Yamanaka H, Minamoto T. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PloS one. 2015;10(3):e0122763.CrossRefGoogle Scholar
  5. 5.
    Li N, Ma J, Guarnera MA, Fang H, Cai L, Jiang F. Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. J Cancer Res Clin. 2014;140(1):145–50.CrossRefGoogle Scholar
  6. 6.
    Morisset D, Stebih D, Milavec M, Gruden K, Zel J. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One. 2013;8(5):e62583.CrossRefGoogle Scholar
  7. 7.
    Vynck M, Trypsteen W, Thas O, Vandekerckhove L, De Spiegelaere W. The future of digital polymerase chain reaction in virology. Mol Diagn Ther. 2016;20(5):437–47.CrossRefGoogle Scholar
  8. 8.
    Bustin S, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Vandesompele J. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55(4):611–22.CrossRefGoogle Scholar
  9. 9.
    Jones GM, Busby E, Garson JA, Grant PR, Nastouli a. E., Devonshire AS, Whale AS. Digital PCR dynamic range is approaching that of real-time quantitative PCR. Biomol Detect Quantif. 2016;10:31–3.CrossRefGoogle Scholar
  10. 10.
    Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Pfaffl MW. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59 (6):892–902.CrossRefGoogle Scholar
  11. 11.
    Verhaegen B, De Reu K, De Zutter L, Verstraete K, Heyndrickx M, Van Coillie E. Comparison of droplet digital PCR and qPCR for the quantification of shiga toxin-producing Escherichia coli in bovine feces. Toxins. 2016;8(5):157.CrossRefGoogle Scholar
  12. 12.
    Pavsic J, Zel J, Milavec M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Anal Bioanal Chem. 2016;408(1):107–21.CrossRefGoogle Scholar
  13. 13.
    Arvia R, Sollai M, Pierucci F, Urso C, Massi D, Zakrzewska K. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in forMalin fixed paraffin embedded (FFPE) cutaneous biopsies. J Virol Methods. 2017;246:15–20.CrossRefGoogle Scholar
  14. 14.
    Bustin S. The continuing problem of poor transparency of reporting and use of inappropriate methods for RT-qPCR. Biomol Detect Quantif. 2017;12:7–9.CrossRefGoogle Scholar
  15. 15.
    Bustin S. The reproducibility of biomedical research: sleepers awake! Biomol Detect Quantif. 2014;2:35–42.Google Scholar
  16. 16.
    White H. A heteroskedastic-consistent covariance matrix estimator and a direct test of heteroskedasticity. Econometrica. 1980;48(4):817–38.CrossRefGoogle Scholar
  17. 17.
    MacKinnon JG, White H. Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. J Econ. 1985;29(3):305–25.CrossRefGoogle Scholar
  18. 18.
    Carroll RJ, Cline DBH. An asymptotic theory for weighted least squares with weights estimated by replication. Biometrika. 1988;75(1):35–43.CrossRefGoogle Scholar
  19. 19.
    Long JS, Ervin LH. Using heteroscedasticity consistent standard errors in the linear regression model. Am Stat. 2000;54(3):217– 24.Google Scholar
  20. 20.
    Wald A, Wolfowitz J. On a test whether two samples are from the same population. Ann Math Stat. 1940; 11:147–62.CrossRefGoogle Scholar
  21. 21.
    Bassham LE, Rukhin AL, Soto J, Nechvatal JR, Smid ME, Barker EB, Vo S. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Gaithersburg, MD: National Institute of Standards and Technology; 2010.CrossRefGoogle Scholar
  22. 22.
    Kutner MH, Nachtsheim CJ, Neter J, Li W. Diagnostics and remedial measures. Applied Linear Statistical Models. 5th ed. New York: McGraw-Hill; 2005. p. 100–53.Google Scholar
  23. 23.
    Opel KL, Chung D, McCord BR. A study of PCR inhibition mechanisms using real-time PCR. J Forensic Sci. 2010;55(1):25–33.CrossRefGoogle Scholar
  24. 24.
    Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79–88.CrossRefGoogle Scholar
  25. 25.
    Jacobs BK, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinforma. 2014;15(1):283.CrossRefGoogle Scholar
  26. 26.
    Harwood VJ, Stoeckel DM. Chapter 2: Performance criteria. Microbial Source Tracking: Methods, Applications, and Case Studies. In: Charles H, Blanch AR, and Harwood VJ, editors. Springer Science and Business Media; 2011.Google Scholar
  27. 27.
    Racki N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods. 2014;10(1):42.CrossRefGoogle Scholar
  28. 28.
    Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, Caliendo AM. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol. 2013;51(2): 540–6.CrossRefGoogle Scholar
  29. 29.
    McKay AT. Distribution of the coefficient of variation and the extended t distribution. J R Stat Soc. 1932;95: 695–8.CrossRefGoogle Scholar
  30. 30.
    Center for Drug Evaluation and Research (CDER). Guidance for Industry: Bioanalytical Method Evaluation. 2001.Google Scholar
  31. 31.
    Clinical and Laboratory Standards Institute. EP05-A3: Evaluation of Precision of Quantitative Measurement Procedures, 3rd Edition. 2014. Clinical and Laboratory Standards Institute, Wayne, PA.Google Scholar
  32. 32.
    Environmental Protection Agency (EPA), FEM Microbiology Action Team. Method Validation of U.S. Environmental Protection Agency Microbiological Methods of Analysis. 2009.Google Scholar
  33. 33.
    Food and Agricultural Organization. Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods CAC/GL 74-2010. 2010.Google Scholar
  34. 34.
    Clinical and Laboratory Standards Institute. EP06-A: Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach. 2003. Clinical and Laboratory Standards Institute, Wayne, PA.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Matthijs Vynck
    • 1
    Email author
  • Jo Vandesompele
    • 2
    • 3
    • 4
  • Olivier Thas
    • 1
    • 5
    • 6
  1. 1.Department of Mathematical Modelling, Statistics and BioinformaticsGhent UniversityGhentBelgium
  2. 2.Center for Medical GeneticsGhent UniversityGhentBelgium
  3. 3.Bioinformatics Institute Ghent: from Nucleotides to Networks (BIG N2N)Ghent UniversityGhentBelgium
  4. 4.BiogazelleZwijnaardeBelgium
  5. 5.Bioinformatics Institute Ghent: from Nucleotides to Networks (BIG N2N)Ghent UniversityGhentBelgium
  6. 6.National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied StatisticsUniversity of WollongongNSWAustralia

Personalised recommendations