Analytical and Bioanalytical Chemistry

, Volume 409, Issue 25, pp 5975–5985 | Cite as

Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions

  • Julian Rüdiger
  • Nicole Bobrowski
  • Marcello Liotta
  • Thorsten Hoffmann
Research Paper

Abstract

Volcanoes release large amounts of reactive trace gases including sulfur and halogen-containing species into the atmosphere. The knowledge of halogen chemistry in volcanic plumes can deliver information about subsurface processes and is relevant for the understanding of the impact of volcanoes on atmospheric chemistry. In this study, a gas diffusion denuder sampling method using 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated glass tubes for the in situ derivatization of reactive halogen species (RHS) was characterized by a series of laboratory experiments. The coating proved to be applicable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, HOBr, BrO, and BrONO2) while being unreactive to HBr (OS −1). The reaction of 1,3,5-TMB with reactive bromine species forms 1-bromo-2,4,6-TMB—other halogens give corresponding derivatives. Solvent elution of the derivatives followed by analysis with GC-MS results in absolute detection limits of a few nanograms for Br2, Cl2, and I2. In 2015, the technique was applied on volcanic gas plumes at Mt. Etna (Italy) measuring reactive bromine mixing ratios between 0.8 and 7.0 ppbv. Total bromine mixing ratios between 4.7 and 27.5 ppbv were derived from alkaline trap samples, simultaneously taken by a Raschig tube and analyzed with IC and ICP-MS. This leads to the first results of the reactive bromine contribution to total bromine in volcanic emissions, spanning over a range between 12% (±1) and 36% (±2). Our finding is in an agreement with previous model studies, which imply values <44% for plume ages <1 min, which is consistent with the assumed plume age at the sampling sites.

Graphical abstract

Illustration of the measurement procedure for the determination of reactive halogen species in volcanic plumes.

Keywords

Diffusion denuder Volcanic halogens Molecular bromine Gas chromatography-mass spectrometry 

Notes

Acknowledgements

Julian Rüdiger, Nicole Bobrowski, and Thorsten Hoffmann acknowledge the support by the research center “Volcanoes and Atmosphere in Magmatic, Open Systems” (VAMOS), University of Mainz, Germany. Julian Rüdiger is thankful for the funding from Max Planck Graduate School at the MPIC (MPGS), Mainz, and the support by the Istituto Nazionale di Geofisica e Vulcanologia in Palermo and Catania, Italy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any research with human participants or animals.

References

  1. 1.
    Platt U, Hönninger G. The role of halogen species in the troposphere. Chemosphere. 2003;52:325–38.CrossRefGoogle Scholar
  2. 2.
    Saiz-Lopez A, Glasow R. Reactive halogen chemistry in the troposphere. Chem Soc Rev. 2012;41:6448–72.CrossRefGoogle Scholar
  3. 3.
    Simpson WR, Brown SS, Saiz-Lopez A, Thornton JA, Glasow R. Tropospheric halogen chemistry: sources, cycling, and impacts. Chem Rev. 2015;115:4035–62.CrossRefGoogle Scholar
  4. 4.
    Wennberg P. Atmospheric chemistry: bromine explosion. Nature. 1999;397:299–301.CrossRefGoogle Scholar
  5. 5.
    Platt U, Lehrer E. Arctic tropospheric ozone chemistry, ARCTOC: results from field, laboratory and modelling studies. European Commission Directorate-General, Science, Research and Development; 1997.Google Scholar
  6. 6.
    von Glasow R, von Kuhlmann R, Lawrence MG, Platt U, Crutzen PJ. Impact of reactive bromine chemistry in the troposphere. Atmos Chem Phys. 2004;4:2481–97.CrossRefGoogle Scholar
  7. 7.
    Yvon SA, Butler JH. An improved estimate of the oceanic lifetime of atmospheric CH3Br. Geophys Res Lett. 1996;23:53–6.CrossRefGoogle Scholar
  8. 8.
    Finlayson-Pitts BJ, Ezell MJ, Pitts JN. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature. 1989;337:241–4.CrossRefGoogle Scholar
  9. 9.
    Symonds RB, Rose WI, Bluth GJS, Gerlach TM. Volcanic-gas studies; methods, results, and applications. Rev Mineral Geochem. 1994;30:1–66.Google Scholar
  10. 10.
    Bobrowski N, Hönninger G, Galle B, Platt U. Detection of bromine monoxide in a volcanic plume. Nature. 2003;423:273–6.CrossRefGoogle Scholar
  11. 11.
    Bobrowski N, Platt U. SO2/BrO ratios studied in five volcanic plumes. J Volcanol Geotherm Res. 2007;166:147–60.CrossRefGoogle Scholar
  12. 12.
    Lee C, Kim YJ, Tanimoto H, Bobrowski N, Platt U, Mori T, et al. High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan. Geophys Res Lett. 2005;32.Google Scholar
  13. 13.
    Bobrowski N, von Glasow R, Aiuppa A, Inguaggiato S, Louban I, Ibrahim OW, et al. Reactive halogen chemistry in volcanic plumes. J Geophys Res Atmos. 2007; doi: 10.1029/2006JD007206 .
  14. 14.
    Theys N, de Smedt I, van Roozendael M, Froidevaux L, Clarisse L, Hendrick F. First satellite detection of volcanic OClO after the eruption of Puyehue-Cordón Caulle. Geophys Res Lett. 2014;41:667–72.CrossRefGoogle Scholar
  15. 15.
    Schönhardt A, Richter A, Theys N, Burrows JP. Space based observation of volcanic iodine monoxide. Atmos Chem Phys. 2017;17:4857–70.CrossRefGoogle Scholar
  16. 16.
    Gerlach TM. Volcanic sources of tropospheric ozone-depleting trace gases. Geochem Geophys Geosyst. 2004; doi: 10.1029/2004GC000747 .
  17. 17.
    Oppenheimer C, Tsanev VI, Braban CF, Cox RA, Adams JW, Aiuppa A, et al. BrO formation in volcanic plumes. Geochim Cosmochim Acta. 2006;70:2935–41.CrossRefGoogle Scholar
  18. 18.
    Martin RS, Mather TA, Pyle DM. High-temperature mixtures of magmatic and atmospheric gases. Geochem Geophys Geosyst. 2006; doi: 10.1029/2005GC001186 .
  19. 19.
    Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 2015;15:4399–981.CrossRefGoogle Scholar
  20. 20.
    Fickert S, Adams JW, Crowley JN. Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions. J Geophys Res. 1999;104:23719–27.CrossRefGoogle Scholar
  21. 21.
    Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, et al. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J Phys Chem Ref Data. 1997;26:521–1011.CrossRefGoogle Scholar
  22. 22.
    Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, et al. Three decades of global methane sources and sinks. Nat Geosci. 2013;6:813–23.CrossRefGoogle Scholar
  23. 23.
    Vingarzan R. A review of surface ozone background levels and trends. Atmos Environ. 2004;38:3431–42.CrossRefGoogle Scholar
  24. 24.
    General S, Bobrowski N, Pöhler D, Weber K, Fischer C, Platt U. Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in the plume. J Volcanol Geotherm Res. 2015;300:175–86.CrossRefGoogle Scholar
  25. 25.
    Gliß J, Bobrowski N, Vogel L, Pöhler D, Platt U. OClO and BrO observations in the volcanic plume of Mt. Etna—implications on the chemistry of chlorine and bromine species in volcanic plumes. Atmos Chem Phys. 2015;15:5659–81.CrossRefGoogle Scholar
  26. 26.
    Zelenski M, Taran Y. Volcanic emissions of molecular chlorine. Geochim Cosmochim Acta. 2012;87:210–26.CrossRefGoogle Scholar
  27. 27.
    Aiuppa A, Federico C, Franco A, Giudice G, Gurrieri S, Inguaggiato S, et al. Emission of bromine and iodine from Mount Etna volcano. Geochem Geophys Geosyst. 2005; doi: 10.1029/2005GC000965 .
  28. 28.
    Witt MLI, Mather TA, Pyle DM, Aiuppa A, Bagnato E, Tsanev VI. Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J Geophys Res. 2008; doi: 10.1029/2007JB005401 .
  29. 29.
    Wittmer J, Bobrowski N, Liotta M, Giuffrida G, Calabrese S, Platt U. Active alkaline traps to determine acidic-gas ratios in volcanic plumes: sampling techniques and analytical methods. Geochem Geophys Geosyst. 2014;15:2797–820.CrossRefGoogle Scholar
  30. 30.
    Honda F, Mizutani Y, Sugiura T, Oana S. A geochemical study of iodine in volcanic gases. Bull Chem Soc Jpn. 1966;39:2690–5.CrossRefGoogle Scholar
  31. 31.
    Snyder GT, Fehn U. Origin of iodine in volcanic fluids. Geochim Cosmochim Acta. 2002;66:3827–38.CrossRefGoogle Scholar
  32. 32.
    John T, Scambelluri M, Frische M, Barnes JD, Bach W. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett. 2011;308:65–76.CrossRefGoogle Scholar
  33. 33.
    von Glasow R. Atmospheric chemistry in volcanic plumes. Proc Natl Acad Sci U S A. 2010;107:6594–9.CrossRefGoogle Scholar
  34. 34.
    Roberts TJ, Braban CF, Martin RS, Oppenheimer C, Adams JW, Cox RA, et al. Modelling reactive halogen formation and ozone depletion in volcanic plumes. Chem Geol. 2009;263:151–63.CrossRefGoogle Scholar
  35. 35.
    Roberts TJ, Jourdain L, Griffiths PT, Pirre M. Re-evaluating the reactive uptake of HOBr in the troposphere with implications for the marine boundary layer and volcanic plumes. Atmos Chem Phys. 2014;14:11185–99.CrossRefGoogle Scholar
  36. 36.
    Platt U, Stutz J. Differential optical absorption spectroscopy: principles and applications. Berlin: Springer; 2008.Google Scholar
  37. 37.
    Bobrowski N, Giuffrida G. Bromine monoxide/sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006–2009. Solid Earth. 2012;3:433.CrossRefGoogle Scholar
  38. 38.
    Lübcke P, Bobrowski N, Arellano S, Galle B, Garzón G, Vogel L, et al. BrO/SO2 molar ratios from scanning DOAS measurements in the NOVAC network. Solid Earth. 2014;5:409.CrossRefGoogle Scholar
  39. 39.
    Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, et al. Network for Observation of Volcanic and Atmospheric Change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res. 2010.Google Scholar
  40. 40.
    Kloskowski A, Pilarczyk M, Namieśnik J. Denudation—a convenient method of isolation and enrichment of analytes. Crit Rev Anal Chem. 2002;32:301–35.CrossRefGoogle Scholar
  41. 41.
    Huang R-J, Hoffmann T. Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular iodine and the activated iodine compounds iodine monochloride and hypoiodous acid in the marine atmosphere. Anal Chem. 2009;81:1777–83.CrossRefGoogle Scholar
  42. 42.
    Huang R-J, Hoffmann T. A denuder–impinger system with in situ derivatization followed by gas chromatography–mass spectrometry for the determination of gaseous iodine-containing halogen species. J Chrom A. 2008;1210:135–41.CrossRefGoogle Scholar
  43. 43.
    Tumbiolo S, Vincent L, Gal J-F, Maria P-C. Thermogravimetric calibration of permeation tubes used for the preparation of gas standards for air pollution analysis. Analyst. 2005;130:1369–74.CrossRefGoogle Scholar
  44. 44.
    Thorenz UR, Kundel M, Müller L, Hoffmann T. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point. Anal Bioanal Chem. 2012;404:2177–83.CrossRefGoogle Scholar
  45. 45.
    Schmeisser M, Taglinger L. Über Acylnitrate und Acylperchlorate, V. Über die Bromnitrate BrNO3, Br(NO3)3 und BrO2NO3. Chem Ber. 1961;94:1533–9.CrossRefGoogle Scholar
  46. 46.
    Brüggemann M, Karu E, Hoffmann T. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS. J Mass Spectrom. 2016;51:141–9.CrossRefGoogle Scholar
  47. 47.
    Seed B. Silanizing glassware. Curr Protoc Cell Biol. 2001; doi: 10.1002/0471143030.cba03es08 .
  48. 48.
    Vollhardt KPC, Schore NE. Organic chemistry: structure and function. 6th ed. New York: W. H. Freeman; 2011.Google Scholar
  49. 49.
    Voudrias EA, Reinhard M. Reactivities of hypochlorous and hypobromous acid, chlorine monoxide, hypobromous acidium ion, chlorine, bromine, and bromine chloride in electrophilic aromatic substitution reactions with p-xylene in water. Environ Sci Technol. 1988;22:1049–56.CrossRefGoogle Scholar
  50. 50.
    Brüggemann M, Karu E, Stelzer T, Hoffmann T. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS). Environ Sci Technol. 2015;49:5571–8.CrossRefGoogle Scholar
  51. 51.
    Rowe MD, Perlinger JA. Prediction of gas collection efficiency and particle collection artifact for atmospheric semivolatile organic compounds in multicapillary denuders. J Chromatogr A. 2010;1217:256–63.CrossRefGoogle Scholar
  52. 52.
    Le Cloarec MF, Pennisi M, Ardouin B, Le Roulley JC, Lambert G. Relationship between gases and volcanic activity of Mount Etna in 1986. J Geophys Res. 1988;93:4477.CrossRefGoogle Scholar
  53. 53.
    La Spina A, Burton M, Salerno GG. Unravelling the processes controlling gas emissions from the central and northeast craters of Mt. Etna. J Volcanol Geotherm Res. 2010;198:368–76.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Julian Rüdiger
    • 1
  • Nicole Bobrowski
    • 2
    • 3
    • 4
  • Marcello Liotta
    • 5
  • Thorsten Hoffmann
    • 1
  1. 1.Institute of Inorganic and Analytical ChemistryJohannes Gutenberg-UniversityMainzGermany
  2. 2.Max Planck Institute for ChemistryMainzGermany
  3. 3.Institute of Environmental PhysicsUniversity of HeidelbergHeidelbergGermany
  4. 4.Former Address: Institute of GeosciencesJohannes Gutenberg-UniversityMainzGermany
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaPalermoItaly

Personalised recommendations