Skip to main content
Log in

A new data processing routine facilitating the identification of surface adhered proteins from bacterial conditioning films via QCM-D/MALDI-ToF/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Conditioning films are an important factor in the initiation and development of microbial biofilms, which are the leading cause of chronic infections associated with medical devices. Here, we analyzed the protein content of conditioning films formed after exposure to supernatants of cultures of the human pathogen Pseudomonas aeruginosa PAO1. Adhesion of substances from the supernatant was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D) sensor chips modified with the commonly used implant material titanium dioxide (TiO2). Attached proteins were identified after on-chip digestion using matrix-assisted laser desorption/ionization (MALDI) time of flight (ToF) mass spectrometry (MS), and a new data processing tool consisting of an XML-database with theoretical tryptic peptides of every PAO1 protein and PHP scripts. Sub-databases containing only proteins, that we found in all replicates, were created and used for MS/MS precursor selection. The obtained MS/MS peaklists were then matched against theoretical fragmentations of the expected peptide sequences to verify protein identification. Using this approach we were able to identify 40 surface-associated proteins. In addition to extracellular proteins such as adhesins, a number of intra-cellular proteins were identified which may be involved in conditioning film formation, suggesting an as-yet unidentified role for these proteins, possibly after cell lysis.

Flowchart of the method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284(5418):1318–22.

    Article  CAS  Google Scholar 

  2. Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004;8:37–57.

    Article  CAS  Google Scholar 

  3. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43(3):338–48.

    Article  CAS  Google Scholar 

  4. de Kerchove AJ, Elimelech M. Impact of alginate conditioning film on deposition kinetics of motile and nonmotile pseudomonas aeruginosa strains. Appl Environ Microbiol. 2007;73(16):5227–34.

    Article  Google Scholar 

  5. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487.

    Article  CAS  Google Scholar 

  6. Canales BK, Higgins L, Markowski T, Anderson L, Li AQ, Monga M. Presence of five conditioning film proteins are highly associated with early stent encrustation. J Endourol. 2009;23(9):1437–42.

    Article  Google Scholar 

  7. Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng. 2001;91(3):233–44.

    Article  CAS  Google Scholar 

  8. Höök F, Vörös J, Rodahl M, Kurrat R, Böni P, Ramsden JJ, et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf B Biointerfaces. 2002;24(2):155–70.

    Article  Google Scholar 

  9. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1-2):1–18.

    Article  CAS  Google Scholar 

  10. Dixon MC. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech. 2008;19(3):151–8.

    Google Scholar 

  11. Voinova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys Scr. 1999;59:391–6.

    Article  CAS  Google Scholar 

  12. Höök F, Rodahl M, Brzezinski P, Kasemo B. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir. 1998;14(4):729–34.

    Article  Google Scholar 

  13. Zaluzec EJ, Gage DA, Watson JT. Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization. Protein Expr Purif. 1995;6(2):109–23.

    Article  CAS  Google Scholar 

  14. Szabo Z, Janaky T. Challenges and developments in protein identification using mass spectrometry. Trends Analyt Chem. 2015;69:76–87.

    Article  CAS  Google Scholar 

  15. Berndt P, Hobohm U, Langen H. Reliable automatic protein identification from matrix-assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis. 1999;20(18):3521–6.

    Article  CAS  Google Scholar 

  16. Yates JR, Speicher S, Griffin PR, Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993;214(2):397–408.

    Article  CAS  Google Scholar 

  17. James P, Quadroni M, Carafoli E, Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993;195(1):58–64.

    Article  CAS  Google Scholar 

  18. Henzel WJ, Watanabe C, Stults JT. Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Sprectrom. 2003;14(9):931–42.

    Article  CAS  Google Scholar 

  19. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–67.

    Article  CAS  Google Scholar 

  20. Yates JR. Database searching using mass spectrometry data. Electrophoresis. 1998;19(6):893–900.

    Article  CAS  Google Scholar 

  21. Kirschhöfer F, Rieder A, Prechtl C, Kühl B, Sabljo K, Wöll C, et al. Quartz crystal microbalance with dissipation coupled to on-chip MALDI-ToF mass spectrometry (QCM-D-MALDI) as a tool for characterising proteinaceous conditioning films on functionalised surfaces. Anal Chim Acta. 2013;802:95–102.

    Article  Google Scholar 

  22. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159–73.

    Article  CAS  Google Scholar 

  23. Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces: Part I: materials and surfaces. Prog Mater Sci. 2013;58(3):261–326.

    Article  CAS  Google Scholar 

  24. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959–64.

    Article  CAS  Google Scholar 

  25. Overhage J, Bains M, Brazas MD, Hancock RE. Hancock swarming of pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008; 406(8):959–64.

    Google Scholar 

  26. Dutta AK, Nayak A, Belfort G. Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid-liquid interface. J Colloid Interface Sci. 2008;324(1-2):55–60.

    Article  CAS  Google Scholar 

  27. Apweiler R, Bairoch A, Wu CH. Protein sequence databases. Curr Opin Chem Biol. 2004;8(1):76–80.

    Article  CAS  Google Scholar 

  28. Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for pseudomonas genomes. Nucleic Acids Res. 2011;39(Database issue):596–600.

    Article  Google Scholar 

  29. Chalkley RJ, Hansen KC, Baldwin MA. Bioinformatic methods to exploit mass spectrometric data for proteomic applications. In: Biological mass spectrometry. vol. 402 of Methods in Enzymology. Academic Press; 2005. p. 289–312.

  30. Johannsmann D. Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance. Phys Chem Chem Phys. 2008;10:4516–34.

    Article  CAS  Google Scholar 

  31. Johnson RS, Davis MT, Taylor JA, Patterson SD. Informatics for protein identification by mass spectrometry. Methods. 2005;35(3):223–36.

    Article  CAS  Google Scholar 

  32. Jungblut P, Thiede B. Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom Rev. 1997;16(3):145–62.

    Article  CAS  Google Scholar 

  33. Pappin DJC, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993;3(6):327–32.

    Article  CAS  Google Scholar 

  34. Chamrad DC, Körting G, Stühler K, Meyer HE, Klose J, Blüggel M. Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics. 2004;4(3): 619–28.

    Article  CAS  Google Scholar 

  35. Toyofuku M, Masanori B, Riedel K, Eberl L. Identification of proteins associated with the pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res. 2012;11(10):4906–15.

    Article  CAS  Google Scholar 

  36. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol. 2010;75(4):827–42.

    Article  CAS  Google Scholar 

  37. Darvish AAS, Rasooli I, Mousavi SLG. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in acinetobacter baumannii ATCC19606(T). Microb Pathog. 2014;74:42–9.

    Article  Google Scholar 

  38. Götz F, Yu W, Dube L, Prax M, Ebner P. Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol. 2015;305(2):230–7.

    Article  Google Scholar 

  39. Hohmann S, Kögel S, Brunner Y, Schmieg B, Ewald C, Kirschhöfer F, et al. Surface acoustic wave (SAW) resonators for monitoring conditioning film formation. Sensors. 2015;15(5):11873–88.

    Article  Google Scholar 

  40. Mrksich M, Whitesides GM. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Bio- phys Biomol Struct. 1996;25:55–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Helmholtz Programme BioInterfaces in Technology and Medicine (BIFTM) of the Karlsruhe Institute of Technology (KIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Hohmann.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 4.35 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohmann, S., Neidig, A., Kühl, B. et al. A new data processing routine facilitating the identification of surface adhered proteins from bacterial conditioning films via QCM-D/MALDI-ToF/MS. Anal Bioanal Chem 409, 5965–5974 (2017). https://doi.org/10.1007/s00216-017-0521-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0521-5

Keywords