Analytical and Bioanalytical Chemistry

, Volume 409, Issue 25, pp 5891–5899 | Cite as

Chemometrics in analytical chemistry—part I: history, experimental design and data analysis tools

  • Richard G. Brereton
  • Jeroen Jansen
  • João Lopes
  • Federico Marini
  • Alexey Pomerantsev
  • Oxana Rodionova
  • Jean Michel Roger
  • Beata Walczak
  • Romà TaulerEmail author
Feature Article


Chemometrics has achieved major recognition and progress in the analytical chemistry field. In the first part of this tutorial, major achievements and contributions of chemometrics to some of the more important stages of the analytical process, like experimental design, sampling, and data analysis (including data pretreatment and fusion), are summarised. The tutorial is intended to give a general updated overview of the chemometrics field to further contribute to its dissemination and promotion in analytical chemistry.


Chemometrics Experimental design Sampling Data preprocessing Projection methods Data fusion 


Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    Mandel J. Statistical methods in analytical chemistry. J Chem Educ. 1949;26:534–9.CrossRefGoogle Scholar
  2. 2.
    Weber G. Enumeration of components in complex systems by fluorescence spectrophotometry. Nature. 1961;190:27–9.CrossRefGoogle Scholar
  3. 3.
    Wallace RM. Analysis of absorption spectra by multicomponent systems. J Phys Chem. 1960;64:899–901.CrossRefGoogle Scholar
  4. 4.
    Fisher RA. Statistical methods for research workers. Edinburgh: Oliver and Boyd; 1925.Google Scholar
  5. 5.
    Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. Applications of artificial intelligence for organic chemistry: the DENDRAL project. New York: McGraw-Hill; 1980.Google Scholar
  6. 6.
    Kowalski BR, Jurs PC, Isenhour TL, Reilly CN. Computerized learning machines applied to chemical problems-multicategory pattern classification by least squares. Anal Chem. 1969;41:695–700.CrossRefGoogle Scholar
  7. 7.
    Wold S. Spline functions, a new tool in data-analysis. Kem Tidskr. 1972;3:34–7.Google Scholar
  8. 8.
    B.R. Kowalski (editor), Chemometrics, mathematics, and statistics in chemistry. NATO ASI Series C, Mathematical and Physical Sciences. Vol. 138 D., 1984, Reidel Publishing Company: Dordrecht.Google Scholar
  9. 9.
    D.L. Massart, B.G.M.Vandeginste, S.N.Deming, Y. Michotte and L.Kaufman. Chemometrics: a textbook., Elsevier, Data Handling in Science and Technology, Volume 2, Amsterdam 1988.Google Scholar
  10. 10.
    Brereton RG. Chemometrics for pattern recognition. Chichester: Wiley; 2009.CrossRefGoogle Scholar
  11. 11.
    van der Greef J, Smilde AK. Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemometrics. 2005;19:376–86.CrossRefGoogle Scholar
  12. 12.
    Marini F, editor. Chemometrics in food chemistry. Amsterdam: Elsevier; 2013.Google Scholar
  13. 13.
    Fisher RA. The design of experiments. Edinburgh: Oliver and Boyd; 1935.Google Scholar
  14. 14.
    Box GEP, Hunter WG, Hunter JS. Statistics for experimenters. New York: Wiley; 1978.Google Scholar
  15. 15.
    Deming SN, Morgan SL. Experimental design: a chemometric approach. Amsterdam: Elsevier; 1987.Google Scholar
  16. 16.
    J.J.Jansen, H.C.J.Hoefslood, R.J.Lalmers, J. van der Greef, M.E. Tiemmerman, A.K. Smilde, Anova simultaneous component analysis, (ASCA): a new tool for analysing designed metabolomics data. Bioinformatics. 2005, 3043–3048.Google Scholar
  17. 17.
    Harrington PB, Viera NE, Espinoza J, Nien JK, Romero R, Lergeyt AL. Analysis of variance-principal component analysis: a soft tool for proteome discovery. Anal Chim Acta. 2005;544:118–27.CrossRefGoogle Scholar
  18. 18.
    F.Marini, D. de Beer, E. Joubert and B. Walczak, Analysis of variance designed chromatographic data sets: the analysis of variance-target projection approach, J Chromatogr. 2015, 94–102.Google Scholar
  19. 19.
    Gy PM. Sampling for analytical purposes. The Netherlands: John Wiley and Sons; 1998.Google Scholar
  20. 20.
    Einax JW, Zwanziger HW, Geis S. Sampling and sampling design. In: Chemometrics in environmental analysis. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA; 1997. p. 95–137.CrossRefGoogle Scholar
  21. 21.
    Esbensen KH, Geladi P. Principles of proper validation: use and abuse of re-sampling for validation. J Chemom. 2010;24:168–87.CrossRefGoogle Scholar
  22. 22.
    Petersen L, Minkkinen P, Esbensen KH. Representative sampling for reliable data analysis: theory of sampling. Chemom Intell Lab Syst. 2005;77:261–77.CrossRefGoogle Scholar
  23. 23.
    Petersen L, Esbensen KH. Sampling in practice: a tos toolbox of unit operations. In: Pomerantsev A, editor. Progress in chemometrics research. US: Nova Science Publishers; 2005.Google Scholar
  24. 24.
    G. Kateman Chemometrics—sampling strategies, pp. 43–62. In: Chemometrics and species identification, Topics in current chemistry, Vol.141, Springer Verlag, FRG, 1987.Google Scholar
  25. 25.
    Dardenne P, Sinnaeve G, Baeten V. Multivariate calibration and chemometrics for near infrared spectroscopy: which method? J Near Infrared Spectrosc. 2000;8:229–37.CrossRefGoogle Scholar
  26. 26.
    Engel J, Gerretzen J, Szymanska E, Jansen J, Downey G, Blanchet L, et al. Breaking with trends in pre-processing? Trends Anal Chem. 2013;50:96–106.CrossRefGoogle Scholar
  27. 27.
    Data preprocessing chapters in comprehensive chemometrics, Vol2, Section Ed. J.Trygg, General Ed. S.D. Brown, R.Tauler, B.Walczak, Elsevier, Amsterdam, The Netherlands, 2009.Google Scholar
  28. 28.
    Beebe KR, Pell RJ, Seasholtz MB. Chemometrics. A practical guide. New York: Wiley; 1998.Google Scholar
  29. 29.
    Booksh KS, Kowalski BR. Theory of analytical chemistry. Anal Chem. 1994;66:782A–91A.CrossRefGoogle Scholar
  30. 30.
    Linear soft modelling chapters in Comprehensive chemometrics, Vol2, Section Ed. A. de Juan, General Ed. S.D. Brown, R. Tauler, B. Walczak, Elsevier, Amsterdam, The Netherlands, 2009.Google Scholar
  31. 31.
    Malinowski ER. Factor analysis in chemistry. New York: John Wiley & Sons; 2002.Google Scholar
  32. 32.
    Jolliffe IT. Principal component analysis. 2nd ed. New York: Springer Verlag; 2002.Google Scholar
  33. 33.
    Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab Syst. 1987;2:37–52.CrossRefGoogle Scholar
  34. 34.
    Lee TW. Independent component analysis—theory and applications. Dordrecht: Kluewer Academic Publishers; 1998.CrossRefGoogle Scholar
  35. 35.
    Tauler R. Multivariate curve resolution applied to second order data. Chemom Intell Lab Syst. 1995;30:133–46.CrossRefGoogle Scholar
  36. 36.
    Smilde A, Bro R, Geladi P. Multiway analysis: applications in the chemical sciences. New York: John Wiley & Sons; 2004.CrossRefGoogle Scholar
  37. 37.
    Bro R. PARAFAC tutorial and applications. Chemom Intell Lab Syst. 1997;38:149–71.CrossRefGoogle Scholar
  38. 38.
    Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proc IEEE. 2015;103:1449–77.CrossRefGoogle Scholar
  39. 39.
    Blanchet L, Smolinska A. In: Jung K, editor. Statistical analysis in proteomics. New York, NY: Springer New York; 2016. p. 209–23.CrossRefGoogle Scholar
  40. 40.
    Acar E, Rasmussen MA, Savorani F, Næs T, Bro R. Understanding data fusion within the framework of coupled matrix and tensor factorizations. Chemom Intell Lab Syst. 2013;129:53–63.CrossRefGoogle Scholar
  41. 41.
    Alter O, Brown PO, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. PNAS. 2003;100:3351–6.CrossRefGoogle Scholar
  42. 42.
    Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J. 2007;52:1181–91.CrossRefGoogle Scholar
  43. 43.
    Löfstedt T, Trygg J. OnPLS - a novel multiblock method for the modelling of predictive and orthogonal variation. J Chemom. 2011;25:441–55.Google Scholar
  44. 44.
    Schouteden M, Van Deun K, Pattyn S, Van Mechelen I. SCA with rotation to distinguish common and distinctive information in linked data. Behav Res Methods. 2013;45:822–33.CrossRefGoogle Scholar
  45. 45.
    Kuligowski J, Perez-Guaita D, Sanchez-Illana A, Leon-Gonzalez Z, de la Guardia M, Vento M, et al. Analysis of multi-source metabolomic data using joint and individual variation explained (JIVE). Analyst. 2015;140:4521–9.CrossRefGoogle Scholar
  46. 46.
    Qannari EM, Courcoux P, Vigneau E. Common components and specific weights analysis performed on preference data. Food Qual Prefer. 2001;12:365–8.CrossRefGoogle Scholar
  47. 47.
    E. Ortiz-Villanueva, F. Benavente; B. Piña; V. Sanz-Nebot; R. Tauler; J. Jaumot. Data fusion strategies for untargeted metabolomics based on MCR-ALS analysis of CE-MS and LC-MS data. Submitted.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Richard G. Brereton
    • 1
  • Jeroen Jansen
    • 2
  • João Lopes
    • 3
  • Federico Marini
    • 4
  • Alexey Pomerantsev
    • 5
  • Oxana Rodionova
    • 5
  • Jean Michel Roger
    • 6
  • Beata Walczak
    • 7
  • Romà Tauler
    • 8
    Email author
  1. 1.School of ChemistryUniversity of BristolBristolUK
  2. 2.Institute for Molecules and MaterialsRadboud UniversityNijmegenThe Netherlands
  3. 3.Research Institute for Medicines (iMed.ULisboa), Faculdade de FarmáciaUniversidade de LisboaLisbonPortugal
  4. 4.Department of ChemistryUniversity of Rome “La Sapienza”RomeItaly
  5. 5.Institute of Chemical Physics RASMoscowRussia
  6. 6.Irstea, UMR ITAPMontpellierFrance
  7. 7.Institute of ChemistryUniversity of Silesia KatowicePoland
  8. 8.IDAEA-CSICBarcelonaSpain

Personalised recommendations