Skip to main content
Log in

Biosensor of alkaline phosphatase based on non-fluorescent FRET of Eu3+-doped oxide nanoparticles and phosphorylated peptide labeled with cyanine dye

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dephosphorylation of biomolecules under the catalysis of alkaline phosphatase (ALP) is a critical physiological process. Abnormal levels of ALP activity have been associated with a number of diseases; thus, a simple and sensitive assay of ALP activity is highly demanded. Herein, to simulate biological conditions, we labeled a hydrosoluble phosphorylated heptapeptide Gly-Pro-Gly-Asn-p-Tyr-Gly-Ala (pGA) with aminated heptamethine cyanine dye (Cy) to give a low fluorescent labeled peptide Cy-pGA. The synthesized Cy-pGA and Eu3+-doped oxide Y0.6Eu0.4VO4 nanoparticles (NPs) were employed respectively as acceptor and donor to in situ form a non-fluorescent Fluorescence Resonance Energy Transfer (FRET) Cy-pGA-NP system, with the help of the strong interaction between Eu3+ ions in the NPs and phosphate group in Cy-pGA. The breaking of the FRET system of Cy-pGA-NP was triggered by the removal of phosphate group in Cy-pGA catalyzed by ALP and resulting in the release of fluorescent Y0.6Eu0.4VO4 NPs. Thus, the formed Cy-pGA-NP as a sensitive sensor can very well respond to the activity of ALP by measuring the time-resolved fluorescent intensity at near-infrared 617 nm (λ ex = 320 nm, delay time 400 μs). This sensor can not only accurately measure the activity of ALP (1–5 mU/mL) in the designed solutions, but it can also be applied to detect the activity of ALP in biological samples, such as cell lysate and human serum, without the interference of autofluorescent background of biosamples and screen ALP inhibitor by a simple mix-and-measure manner.

A biosensor of alkaline phosphatase (ALP) based on non-fluorescent FRET of Eu3+-doped oxide Y0.6Eu0.4VO4 nanoparticles and the phosphorylated heptapeptide labeled with cyanine dye (Cy-pGA)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kikuchi I, Takahashi-Kanemitsu A, Sakiyama N, Tang C, Tang PJ, Noda S, et al. Dephosphorylated parafibromin is a transcriptional coactivator of the Wnt/Hedgehog/Notch pathways. Nat Commun. 2016;7:12887.

    Article  CAS  Google Scholar 

  2. Begley MJ, Yun CH, Gewinner CA, Asara JM, Johnson JL, Coyle AJ, et al. EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src. Nat Struct Mol Biol. 2015;22:983–90.

    Article  CAS  Google Scholar 

  3. Sur S, Agrawal DK. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem. 2016;416:33–46.

    Article  CAS  Google Scholar 

  4. Fernandez NJ, Kidney BA. Alkaline phosphatase: beyond the liver. Vet Clin Path. 2007;36:223–33.

    Article  Google Scholar 

  5. Pike AF, Kramer NI, Blaauboer BJ, Seinen W, Brands R. A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response. Biochim Biophys Acta. 1832;2013:2044–56.

    Google Scholar 

  6. Gyurcsanyi RE, Bereczki A, Nagy G, Neuman MR, Lindner E. Amperometric microcells for alkaline phosphatase assay. Analyst. 2002;127:235–40.

    Article  CAS  Google Scholar 

  7. Albillos SM, Reddy R, Salter R. Evaluation of alkaline phosphatase detection in dairy products using a modified rapid chemiluminescent method and official methods. J Food Prot. 2011;74:1144–54.

    Article  CAS  Google Scholar 

  8. Miao P, Ning L, Li X, Shu Y, Li G. An electrochemical alkaline phosphatase biosensor fabricated with two DNA probes coupled with lambda exonuclease. Biosens Bioelectron. 2011;27:178–82.

    Article  CAS  Google Scholar 

  9. Bianchi A, Giachetti E, Vanni P. A continuous spectrophotometric assay for alkaline phosphatase with glycerophosphate as substrate. J Biochem Biophys Methods. 1994;28:35–41.

    Article  CAS  Google Scholar 

  10. Jiang H, Wang X. Alkaline phosphatase-responsive anodic electrochemiluminescence of CdSe nanoparticles. Anal Chem. 2012;84:6986–93.

    Article  CAS  Google Scholar 

  11. Ruan C, Wang W, Gu B. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Anal Chem. 2006;78:3379–84.

    Article  CAS  Google Scholar 

  12. Choi Y, Ho NH, Tung CH. Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed. 2007;46:707–9.

    Article  CAS  Google Scholar 

  13. Qian ZS, Chai LJ, Huang YY, Tang C, Shen JJ, Chen JR, et al. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens Bioelectron. 2015;68:675–80.

    Article  CAS  Google Scholar 

  14. Kang W, Ding Y, Zhou H, Liao Q, Yang X, Yang Y, et al. Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim Acta. 2015;182:1161–7.

    Article  CAS  Google Scholar 

  15. Qu F, Pei H, Kong R, Zhu S, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta. 2017;165:136–42.

    Article  CAS  Google Scholar 

  16. Zhang W, Gao Y, Li Y, Zhang Q, Hu Z, Zhang Y, et al. Polyphosphoric acid-induced perylene probe self-assembly and label-free fluorescence turn-on detection of alkaline phosphatase. Anal Bioanal Chem. 2017;409:1031–6.

    Article  CAS  Google Scholar 

  17. Wei W, Zhang Y, Chen R, Goggi J, Ren N, Huang L, et al. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem Mater. 2014;26:5183–6.

    Article  CAS  Google Scholar 

  18. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev. 2015;44:1379–15.

    Article  CAS  Google Scholar 

  19. Zeng S, Wang H, Lu W, Yi Z, Rao L, Liu H, et al. Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. Biomaterials. 2014;35:2934–41.

    Article  CAS  Google Scholar 

  20. Li W, Wang J, Ren J, Qu X. Near-infrared upconversion controls photocaged cell adhesion. J Am Chem Soc. 2014;136:2248–51.

    Article  CAS  Google Scholar 

  21. Li H, Wang L. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification. Analyst. 2013;138:1589–95.

    Article  CAS  Google Scholar 

  22. Wang S, Wang L. Lanthanide-doped nanomaterials for luminescence detection and imaging. TrAC Trends Anal Chem. 2014;62:123–34.

    Article  Google Scholar 

  23. Casanova D, Giaume D, Gacoin T, Boilot J-P, Alexandrou A. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments. J Phys Chem B. 2006;110:19264–70.

    Article  CAS  Google Scholar 

  24. Li BH, Zhang YL, Li FS, Wang W, Liu J, Liu M, et al. A novel sensor for the detection of alkaline phosphatase activity based on the self-assembly of Eu3+-doped oxide nanoparticles and heptamethine cyanine dye. Sensor Actuat B-Chem. 2016;233:479–85.

    Article  CAS  Google Scholar 

  25. Wang L, Jin J, Chen X, Fan HH, Li BK, Cheah KW, et al. A cyanine based fluorophore emitting both single photon near-infrared fluorescence and two-photon deep red fluorescence in aqueous solution. Org Biomol Chem. 2012;10:5366–70.

    Article  CAS  Google Scholar 

  26. Kim TI, Kim H, Choi Y, Kim Y. A fluorescent turn-on probe for the detection of alkaline phosphatase activity in living cells. Chem Commun (Camb). 2011;47:9825–7.

    Article  CAS  Google Scholar 

  27. Han Z, Huang Z, Lu Y, Hu Y. Automatic analysis of clinical chemistry project. third ed. Shenyang: Liaoning science and technology press; 2005.

    Google Scholar 

  28. Liu C, Chang L, Wang H, Bai J, Ren W, Li Z. Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity. Anal Chem. 2014;86:6095–102.

    Article  CAS  Google Scholar 

  29. Huignard A, Gacoin T, Boilot J-P. Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chem Mater. 2000;12:1090–4.

    Article  CAS  Google Scholar 

  30. Peng X, Xu X, Draney DR, Little GM, Chen J, Volcheck WM. Preparation of nonfluorescent near-IR quencher cyanine dyes for probe labeling. USA 8227621: LI-COR, Inc.; 2012.

    Google Scholar 

  31. Kiyose K, Aizawa S, Sasaki E, Kojima H, Hanaoka K, Terai T, et al. Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines. Chem. 2009;15:9191–200.

    Article  CAS  Google Scholar 

  32. Burtist C, Ashwood E. Tietz textbook of clinical chemistry. second ed. Philadelphia: WB Saunders; 1994.

    Google Scholar 

  33. al-Rashida M, Iqbal J. Inhibition of alkaline phosphatase: an emerging new drug target. Mini-Rev Med Chem. 2015;15:41–51.

    Article  CAS  Google Scholar 

  34. Kim SH, Shidoji Y, Hosoya N. Multiple form of L-phenylalanine sensitive alkaline phosphatase in rat fecal extracts. Jap J Exp Med. 1986;56:251–5.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support from the National Natural Science Foundation of China (No. 21272144) and the Fundamental Research Funds for the Central Universities of Shaanxi Normal University (No. X2015YB06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao Lin Li or Yi Feng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F.S., Zhang, Y.L., Li, X.B. et al. Biosensor of alkaline phosphatase based on non-fluorescent FRET of Eu3+-doped oxide nanoparticles and phosphorylated peptide labeled with cyanine dye. Anal Bioanal Chem 409, 5491–5500 (2017). https://doi.org/10.1007/s00216-017-0485-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0485-5

Keywords

Navigation