Analytical and Bioanalytical Chemistry

, Volume 409, Issue 19, pp 4647–4658 | Cite as

Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections

  • Tobiloba Sojinrin
  • João CondeEmail author
  • Kangze Liu
  • James Curtin
  • Hugh J. Byrne
  • Daxiang Cui
  • Furong TianEmail author
Research Paper


Fungi, which are common in the environment, can cause a multitude of diseases. Warm, humid conditions allow fungi to grow and infect humans via the respiratory, digestive and reproductive tracts, genital area and other bodily interfaces. Fungi can be detected directly by microscopy, using the potassium hydroxide test, which is the gold standard and most popular method for fungal screening. However, this test requires trained personnel operating specialist equipment, including a fluorescent microscope and culture facilities. As most acutely infected patients seek medical attention within the first few days of symptoms, the optimal diagnostic test would be rapid and self-diagnostic simplifying and improving the therapeutic outcome. In suspensions of gold nanoparticles, Aspergillus niger can cause a colour change from red to blue within 2 min, as a result of changes in nanoparticle shape. A similar colour change was observed in the supernatant of samples of human toenails dispersed in water. Scanning electron microscopy, UV/Vis and Raman spectroscopy were employed to monitor the changes in morphology and surface plasmon resonance of the nanoparticles. The correlation of colour change with the fungal infection was analysed using the absorbance ratio at 520 nm/620 nm. We found a decrease in the ratio when the fungi concentration increased from 1 to 16 CFU/mL, with a detection limit of 10 CFU/mL. The test had an 80% sensitivity and a 95% specificity value for the diagnosis of athlete’s foot in human patients. This plasmonic gold nanoparticle-based system for detection of fungal infections measures the change in shape of gold nanoparticles and generates coloured solutions with distinct tonality. Our application has the potential to contribute to self-diagnosis and hygiene control in laboratories/hospitals with fewer resources, just using the naked eye.

Graphical abstract

Colorimetric method for fungi detection with gold nano particles


Fungi Gold nanoparticles Plasmonic assay Self-diagnostic 



T.S. and K.L. thank Fiosraigh Scholarship Programme from Dublin Institute Technology. F.T. acknowledges Enterprise Ireland CF-2015-0269-Y. This work is supported by the National Natural Scientific Fund (No. 81225010), 863 Project of China (2014AA020700), Shanghai Science and Technology Fund (No. 13NM1401500) and Shanghai Jiao Tong University Innovation Fund for Postgraduates (No. AE340011).

Author contributions

Conceived and designed the experiments: T.S., J.C., K.L., J.C., F.T. Analysed the data: T.S., J.C., K.L., F.T. Contributed reagents/materials/analysis tools: J.C., D.C., F.T. Wrote the paper: K.L., J.C., H.J.B., F.T., T.S.

Compliance with ethical standards

Ethical committee approval

Clinical specimen experiments were performed according to the Guidelines for Ethical Committee, Shanghai Jiao Tong University. All the experiments used in this study complied with current ethical considerations: Approval (SYXK-2007-0025) of Ethical Committee of Shanghai Jiao Tong University (Shanghai, China).

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

216_2017_414_MOESM1_ESM.pdf (464 kb)
ESM 1 (PDF 463 kb)


  1. 1.
    Free TA. Current diagnosis and treatment in infectious diseases. Nurse Pract. 2002;27(2):43.Google Scholar
  2. 2.
    Kirk P, Cannon P, David J, Stalpers J. Ainsworth and Bisby’s dictionary of the fungi. Ainsworth and Bisby’s dictionary of the fungi: 9th edition (Ed. 9); 2001.Google Scholar
  3. 3.
    Fleming RV, Walsh TJ, Anaissie EJ. Emerging and less common fungal pathogens. Infect Dis Clin N Am. 2002;16(4):915–33.CrossRefGoogle Scholar
  4. 4.
    McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, et al. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis. 2001;33(5):641–7.CrossRefGoogle Scholar
  5. 5.
    Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11(3):415–29.Google Scholar
  6. 6.
    Vélez A, Linares MJ, Fenández-Roldán JC, Casal M. Study of onychomycosis in Cordoba, Spain: prevailing fungi and pattern of infection. Mycopathologia. 1997;137(1):1–8.CrossRefGoogle Scholar
  7. 7.
    Godoy P, Nunes F, Silva V, Tomimori-Yamashita J, Zaror L, Fischman O. Onychomycosis caused by Fusarium solani and Fusarium oxysporum in Sao Paulo, Brazil. Mycopathologia. 2004;157(3):287–90.CrossRefGoogle Scholar
  8. 8.
    Kemna ME, Elewski BE. A US epidemiologic survey of superficial fungal diseases. J Am Acad Dermatol. 1996;35(4):539–42.CrossRefGoogle Scholar
  9. 9.
    Sellami A, Sellami H, Makni F, Mezghani S, Cheikh-Rouhou F, Marrekchi S, et al. Childhood dermatomycoses study in Sfax hospital, Tunisia. Mycoses. 2008;51(5):451–4.CrossRefGoogle Scholar
  10. 10.
    Svejgaard E, Nilsson J. Onychomycosis in Denmark: prevalence of fungal nail infection in general practice. Mycoses. 2004;47(3–4):131–5.CrossRefGoogle Scholar
  11. 11.
    Baran R. The nail in the elderly. Clin Dermatol. 2011;29(1):54–60.CrossRefGoogle Scholar
  12. 12.
    Baran R, Haneke E, Hay RJ, Piraccini BM, Tosti A. Onychomycosis: the current approach to diagnosis and therapy. CRC Press; 1999.Google Scholar
  13. 13.
    Bontems O, Hauser P, Monod M. Evaluation of a polymerase chain reaction-restriction fragment length polymorphism assay for dermatophyte and nondermatophyte identification in onychomycosis. Br J Dermatol. 2009;161(4):791–6.CrossRefGoogle Scholar
  14. 14.
    Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8(6):904–17.CrossRefGoogle Scholar
  15. 15.
    Han HW, Hsu MM-L, Choi JS, Hsu C-K, Hsieh HY, Li HC, et al. Rapid detection of dermatophytes and Candida albicans in onychomycosis specimens by an oligonucleotide array. BMC Infect Dis. 2014;14(1):1.CrossRefGoogle Scholar
  16. 16.
    Pickering JW, Sant HW, Bowles CA, Roberts WL, Woods GL. Evaluation of a (1→3)-β-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2005;43(12):5957–62.CrossRefGoogle Scholar
  17. 17.
    Van Thiel DH, George M, Moore CM (2012) Fungal infections: their diagnosis and treatment in transplant recipients. Int J Hepatol 2012.Google Scholar
  18. 18.
    Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24(2):247–80. doi: 10.1128/CMR.00053-10.CrossRefGoogle Scholar
  19. 19.
    Andrews MD, Burns M. Common tinea infections in children. Am Fam Physician. 2008;77(10):1415–20.Google Scholar
  20. 20.
    Sugunan A, Melin P, Schnurer J, Hilborn JG, Dutta J. Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater. 2007;19(1):77–81.CrossRefGoogle Scholar
  21. 21.
    Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA. Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem Int Ed Engl. 2003;42(20):2306–9. doi: 10.1002/anie.200351231.CrossRefGoogle Scholar
  22. 22.
    Conde J, Bao C, Cui D, Baptista PV, Tian F. Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release. 2014;183:87–93. doi: 10.1016/j.jconrel.2014.03.045.CrossRefGoogle Scholar
  23. 23.
    Bao C, Chen L, Wang T, Lei C, Tian F, Cui D, et al. One step quick detection of cancer cell surface marker by integrated NiFe-based magnetic biosensing cell cultural chip. Nano-Micro Letters. 2013;5(3):213–22.CrossRefGoogle Scholar
  24. 24.
    Conde J, Tian F, Hernandez Y, Bao C, Cui D, Janssen KP, et al. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 2013;34(31):7744–53. doi: 10.1016/j.biomaterials.2013.06.041.CrossRefGoogle Scholar
  25. 25.
    Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6(9):8316–24. doi: 10.1021/nn3030223.CrossRefGoogle Scholar
  26. 26.
    Bao C, Beziere N, del Pino P, Pelaz B, Estrada G, Tian F, et al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013;9(1):68–74.CrossRefGoogle Scholar
  27. 27.
    Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010;7:3. doi: 10.1186/1743-8977-7-3.CrossRefGoogle Scholar
  28. 28.
    Bao C, Tian F, Estrada G. Improved visualisation of internalised carbon nanotubes by maximising cell spreading on nanostructured substrates. Nano Biomed Eng. 2011;2(4):201–10.Google Scholar
  29. 29.
    De La Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7(12):821–4.CrossRefGoogle Scholar
  30. 30.
    Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14(5):1322–34.CrossRefGoogle Scholar
  31. 31.
    Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ. Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal Methods. 2014;6(22):9116–23.CrossRefGoogle Scholar
  32. 32.
    Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem. 2002;3(5):461–3. doi: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X.CrossRefGoogle Scholar
  33. 33.
    Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol. 2002;58(5):582–94.CrossRefGoogle Scholar
  34. 34.
    Fischbach FT, Dunning MB. A manual of laboratory and diagnostic tests. Lippincott Williams & Wilkins; 2009.Google Scholar
  35. 35.
    Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 2016;106:87–97.CrossRefGoogle Scholar
  36. 36.
    Singh DK, Ganbold E-O, Cho E-M, Cho K-H, Kim D, Choo J, et al. Detection of the mycotoxin citrinin using silver substrates and Raman spectroscopy. J Hazard Mater. 2014;265:89–95.CrossRefGoogle Scholar
  37. 37.
    Khoury CG, Vo-Dinh T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C. 2008;112(48):18849–59.CrossRefGoogle Scholar
  38. 38.
    Kuyucak N, Volesky B. Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett. 1988;10(2):137–42.CrossRefGoogle Scholar
  39. 39.
    Tsuruta T. Biosorption and recycling of gold using various microorganisms. J Gen Appl Microbiol. 2004;50(4):221–8.CrossRefGoogle Scholar
  40. 40.
    Taherzadeh MJ, Fox M, Hjorth H, Edebo L. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol. 2003;88(3):167–77.CrossRefGoogle Scholar
  41. 41.
    Xu B, Jahic M, Blomsten G, Enfors S-O. Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol. 1999;51(5):564–71.CrossRefGoogle Scholar
  42. 42.
    Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—its characterization and stability. Chem Eng Technol. 2009;32(7):1036–41.CrossRefGoogle Scholar
  43. 43.
    Binupriya A, Sathishkumar M, Vijayaraghavan K, Yun S-I. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater. 2010;177(1):539–45.CrossRefGoogle Scholar
  44. 44.
    Gole A, Dash C, Ramakrishnan V, Sainkar S, Mandale A, Rao M, et al. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir. 2001;17(5):1674–9.CrossRefGoogle Scholar
  45. 45.
    Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir. 2007;23(13):7113–7.CrossRefGoogle Scholar
  46. 46.
    Wyss M, Brugger R, Kronenberger A, Rémy R, Fimbel R, Oesterhelt G, et al. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. 1999;65(2):367–73.Google Scholar
  47. 47.
    European Union (Drinking Water) Regulations. S.I. No. 122/2014. Ireland: Irish Statute Book; 2014.Google Scholar
  48. 48.
    Bathing Water Quality Regulations. S.I. No. 79/2008. Ireland: Irish Statute Book; 2008.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tobiloba Sojinrin
    • 1
  • João Conde
    • 2
    • 3
    Email author
  • Kangze Liu
    • 1
  • James Curtin
    • 1
  • Hugh J. Byrne
    • 4
  • Daxiang Cui
    • 5
  • Furong Tian
    • 1
    Email author
  1. 1.Environmental Sustainability and Health Institute, School of Food Science and Environmental Health, College of Sciences and HealthDublin Institute of TechnologyDublin 1Ireland
  2. 2.Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard–MIT Division for Health Sciences and TechnologyCambridgeUSA
  3. 3.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  4. 4.FOCAS Research InstituteDublin Institute of TechnologyDublin 8Ireland
  5. 5.Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Education Ministry, Department of Instrument Science and Engineering, National Center for Translational MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations