Analytical and Bioanalytical Chemistry

, Volume 409, Issue 18, pp 4377–4381 | Cite as

Fluorescent coelenteramide-containing protein as a color bioindicator for low-dose radiation effects

  • Alena S. Petrova
  • Anna A. Lukonina
  • Gennadii A. Badun
  • Nadezhda S. Kudryasheva
Rapid Communication

Abstract

The study addresses the application of fluorescent coelenteramide-containing proteins as color bioindicators for radiotoxicity evaluation. Biological effects of chronic low-dose radiation are under investigation. Tritiated water (200 MBq/L) was used as a model source of low-intensive ionizing radiation of beta type. ‘Discharged obelin,’ product of bioluminescent reaction of marine coelenterate Obelia longissimi, was used as a representative of the coelenteramide-containing proteins. Coelenteramide, fluorophore of discharged obelin, is a photochemically active molecule; it produces fluorescence forms of different color. Contributions of ‘violet’ and ‘blue-green’ forms to the visible fluorescence serve as tested parameters. The contributions depend on the coelenteramide’s microenvironment in the protein, and, hence, evaluate distractive ability and toxicity of radiation. The protein samples were exposed to beta radiation for 18 days, and maximal dose accumulated by the samples was 0.28 Gy, being close to a tentative limit of a low-dose interval. Increase of relative contribution of ‘violet’ fluorescence under exposure to the beta irradiation was revealed. High sensitivity of the protein-based test system to low-dose ionizing radiation (to 0.03 Gy) was demonstrated. The study develops physicochemical understanding of radiotoxic effects.

Graphical abstract

Coelenteramide-containing protein (discharged obelin) changes fluorescence color under exposure to low-dose ionizing radiation of tritium

Keywords

Fluorescent protein Coelenteramide Discharged photoprotein obelin Multicolor bioindicator Radiotoxicity 

Abbreviations

CLM

Coelenteramide N-[2-benzyl-6-(4-oxocyclohexa-2.5-dien-1-ylidene)-1H–pyrazin-3-yl]-2-(4-hydroxyphenyl) acetamide

CLM-CFP

Coelenteramide-containing fluorescent protein

References

  1. 1.
    Belogurova NV, Kudryasheva NS. Discharged photoprotein obelin: fluorescence peculiarities. J Photochem Photobiol B. 2010;101:103–8. doi:10.1016/j.jphotobiol.2010.07.001.CrossRefGoogle Scholar
  2. 2.
    Belogurova NV, Kudryasheva NS, Alieva RR, Sizykh AG. Spectral components of bioluminescence of aequorin and obelin. J Photochem Photobiol B. 2008;92:117–22. doi:10.1016/j.jphotobiol.2008.05.006.CrossRefGoogle Scholar
  3. 3.
    Alieva RR, Tomilin FN, Kuzubov AA, Ovchinnikov SG, Kudryasheva NS. Ultraviolet fluorescence of coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study. J Photochem Photobiol B. 2016;162:318–23. doi:10.1016/j.jphotobiol.2016.07.004.CrossRefGoogle Scholar
  4. 4.
    Vysotskiĭ ES, Markova SV, Frank LA. Calcium-regulated photoproteins of marine coelenterates. Mol Biol (Mosk). 2006;40:404–17.Google Scholar
  5. 5.
    Frank LA. Ca(2+)-regulated photoproteins: effective immunoassay reporters. Sensors. 2010;10:11287–300. doi:10.3390/s101211287.CrossRefGoogle Scholar
  6. 6.
    Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker. Anal Bioanal Chem. 2014;406:2965–74. doi:10.1007/s00216-014-7685-z.CrossRefGoogle Scholar
  7. 7.
    Petrova AS, Alieva RR, Belogurova NV, Tirranen LS, Kudryasheva NS. Variation of spectral characteristics of coelenteramide-containing fluorescent protein from Obelia longissima exposed to dimethyl sulfoxide. Russ Phys J. 2016;59:562–7. doi:10.1007/s11182-016-0806-8.CrossRefGoogle Scholar
  8. 8.
    Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Fluorescence properties of Ca2+−independent discharged obelin and its application prospects. Anal Bioanal Chem. 2013;405:3351–8. doi:10.1007/s00216-013-6757-9.CrossRefGoogle Scholar
  9. 9.
    Illarionov BA, Frank LA, Illarionova VA, Bondar VS, Vysotski ES, Blinks JR. Recombinant obelin: cloning and expression of cDNA, purification, and characterization as a calcium indicator. In: Methods Enzymol. Academic Press; 2000. p. 223–49.Google Scholar
  10. 10.
    Yacimirski KB, Malikova TV. Spectroscopic methods in chemistry of complex. Moscow: Khimiya; 1984.Google Scholar
  11. 11.
    Shimomura O, Teranishi K. Light-emitters involved in the luminescence of coelenterazine. Luminescence. 2000;15:51–8. doi:10.1002/(SICI)1522-7243(200001/02)15:1<51::AID-BIO555>3.0.CO;2-J.
  12. 12.
    Li Z-S, Zou L-Y, Min C-G, Ren A-M. The effect of micro-environment on luminescence of aequorin: the role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide. J Photochem Photobiol B. 2013;127:94–9. doi:10.1016/j.jphotobiol.2013.07.022.CrossRefGoogle Scholar
  13. 13.
    Min C, Li Z, Ren A, Zou L, Guo J, Goddard JD. The fluorescent properties of coelenteramide, a substrate of aequorin and obelin. J Photochem Photobiol Chem. 2013;251:182–8. doi:10.1016/j.jphotochem.2012.10.028.CrossRefGoogle Scholar
  14. 14.
    Tomilin FN, Antipina LY, Vysotski ES, Ovchinnikov SG, Gitelzon II. Fluorescence of calcium-discharged obelin: the structure and molecular mechanism of emitter formation. Dokl Biochem Biophys. 2008;422:279–84. doi:10.1134/S1607672908050086.CrossRefGoogle Scholar
  15. 15.
    Fedorova GF, Menshov VA, Trofimov AV, Tsaplev YB, Vasil'ev RF, Yablonskaya OI. Chemiluminescence of cigarette smoke: salient features of the phenomenon. Photochem Photobiol. 2017;93:579–89. doi:10.1111/php.12689.CrossRefGoogle Scholar
  16. 16.
    Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76. doi:10.1007/s00216-011-5455-8.CrossRefGoogle Scholar
  17. 17.
    Kudryasheva NS, Tarasova AS. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. Environ Sci Pollut Res. 2015;22:155–67. doi:10.1007/s11356-014-3459-6.CrossRefGoogle Scholar
  18. 18.
    Kudryasheva NS, Rozhko TV. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. J Environ Radioact. 2015;142:68–77. doi:10.1016/j.jenvrad.2015.01.012.CrossRefGoogle Scholar
  19. 19.
    Rozhko TV, Badun GA, Razzhivina IA, Guseynov OA, Guseynova VE, Kudryasheva NS. On the mechanism of biological activation by tritium. J Environ Radioact. 2016;157:131–5. doi:10.1016/j.jenvrad.2016.03.017.CrossRefGoogle Scholar
  20. 20.
    Selivanova MA, Mogilnaya OA, Badun GA, Vydryakova GA, Kuznetsov AM, Kudryasheva NS. Effect of tritium on luminous marine bacteria and enzyme reactions. J Environ Radioact. 2013;120:19–25. doi:10.1016/j.jenvrad.2013.01.003.CrossRefGoogle Scholar
  21. 21.
    Kratasyuk VA, Esimbekova EN. Applications of luminous bacteria enzymes in toxicology. Comb Chem High Throughput Screen. 2015;18:952–9. doi:10.2174/1386207318666150917100257.CrossRefGoogle Scholar
  22. 22.
    Girotti S, Ferri EN, Fumo MG, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta. 2008;608:2–29. doi:10.1016/j.aca.2007.12.008.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alena S. Petrova
    • 1
    • 2
  • Anna A. Lukonina
    • 1
    • 3
  • Gennadii A. Badun
    • 4
  • Nadezhda S. Kudryasheva
    • 1
    • 3
  1. 1.Institute of Biophysics SB RAS, FRC KSC SB RASKrasnoyarskRussia
  2. 2.Krasnoyarsk State Agrarian UniversityKrasnoyarskRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations