Skip to main content
Log in

Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this article, a facile and sensitive electrochemical method for quantification of Salmonella Pullorum and Salmonella Gallinarum (S. Pullorum and S. Gallinarum) was established by monitoring glucose consumption with a personal glucose meter (PGM). Antibody-functionalized magnetic nanoparticles (IgG-MNPs) were used to capture and enrich S. Pullorum and S. Gallinarum, and IgG-MNPs-S. Pullorum and IgG-MNPs-S. Gallinarum complexes were magnetically separated from a sample using a permanent magnet. The trace tag was prepared by loading polyclonal antibodies and high-content glucose oxidase on amino-functionalized silica nanoparticles (IgG-SiNPs-GOx). With a sandwich-type immunoassay format, IgG-SiNPs-GOx were added into the above mixture solution and conjugated to the complexes, forming sandwich composites IgG-MNPs/S. Pullorum and S. Gallinarum/IgG-SiNPs-GOx. The above sandwich composites were dispersed in glucose solution. Before and after the hydrolysis of glucose, the concentration of glucose was measured using PGM. Under optimal conditions, a linear relationship between the decrease of glucose concentration and the logarithm of S. Pullorum and S. Gallinarum concentration was obtained in the concentration range from 1.27 × 102 to 1.27 × 105 CFU mL−1, with a detection limit of 7.2 × 101 CFU mL−1 (S/N = 3). This study provides a portable, low-cost, and quantitative analytical method for bacteria detection; thus, it has a great potential in the prevention of disease caused by S. Pullorum and S. Gallinarum in poultry.

A schematic illustration of the fabrication process of IgG-SiNPs-GOD nanomaterials (A) and IgG-MNPs (B) and experimental procedure of detection of S. Pullorum and S. Gallinarum using GOD-functionalized silica nanospheres as trace tags based on PGM (C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee K-M, Runyon M, Herrman TJ, Phillips R, Hsieh J. Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control. 2015;47:264–76.

    Article  Google Scholar 

  2. Hu C, Dou W, Zhao G. Enzyme immunosensor based on gold nanoparticles electroposition and streptavidin-biotin system for detection of S. pullorum & S. gallinarum. Electrochim Acta. 2014;117:239–45.

    Article  CAS  Google Scholar 

  3. Wan Y, Qi P, Zhang D, Wu J, Wang Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron. 2012;33(1):69–74.

    Article  CAS  Google Scholar 

  4. Soria MA, Soria MC, Bueno DJ. A comparative study of culture methods and polymerase chain reaction for Salmonella detection in egg content. Poult Sci. 2012;91(10):2668–76.

    Article  CAS  Google Scholar 

  5. Ozalp VC, Bayramoglu G, Erdem Z, Arica MY. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation. Anal Chim Acta. 2015;853:533–40.

    Article  CAS  Google Scholar 

  6. Vaisocherova-Lisalova H, Visova I, Ermini ML, Springer T, Song XC, Mrazek J, Lamacova J, Scott Lynn Jr N, Sedivak P, Homola J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90.

    Article  CAS  Google Scholar 

  7. Mouffouk F, da Costa AM, Martins J, Zourob M, Abu-Salah KM, Alrokayan SA. Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron. 2011;26(8):3517–23.

    Article  CAS  Google Scholar 

  8. Zhou H, Yang D, Mircescu NE, Ivleva NP, Schwarzmeier K, Wieser A, Schubert S, Niessner R, Haisch C. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim Acta. 2015;182(13–14):2259–66.

    Article  CAS  Google Scholar 

  9. Yang W, Lu X, Wang Y, Sun S, Liu C, Li Z. Portable and sensitive detection of protein kinase activity by using commercial personal glucose meter. Sens Actuators B Chem. 2015;210:508–12.

    Article  CAS  Google Scholar 

  10. Ming J, Fan W, Jiang T-F, Wang Y-H, Lv Z-H. Portable and sensitive detection of copper(II) ion based on personal glucose meters and a ligation DNAzyme releasing strategy. Sens Actuators B Chem. 2017;240:1091–8.

    Article  CAS  Google Scholar 

  11. Xiang Y, Lu Y. Using commercially available personal glucose meters for portable quantification of DNA. Anal Chem. 2012;84(4):1975–80.

    Article  CAS  Google Scholar 

  12. Xiang Y, Lu Y. Portable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Anal Chem. 2012;84(9):4174–8.

    Article  CAS  Google Scholar 

  13. Ma X, Chen Z, Zhou J, Weng W, Zheng O, Lin Z, Guo L, Qiu B, Chen G. Aptamer-based portable biosensor for platelet-derived growth factor-BB (PDGF-BB) with personal glucose meter readout. Biosens Bioelectron. 2014;55:412–6.

    Article  CAS  Google Scholar 

  14. Joo J, Kwon D, Shin HH, Park K-H, Cha HJ, Jeon S. A facile and sensitive method for detecting pathogenic bacteria using personal glucose meters. Sens Actuators B Chem. 2013;188:1250–4.

    Article  CAS  Google Scholar 

  15. Ávila EFD, Escamilla-Gómez V, Campuzano S, Pedrero M, Salvador JP, Marco MP, Pingarrón JM. Ultrasensitive amperometric magnetoimmunosensor for human C-reactive protein quantification in serum. Sens Actuators B Chem. 2013;188(11):212–20.

    Google Scholar 

  16. Liu X, Shuai H-L, Liu Y-J, Huang K-J. An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification. Sens Actuators B Chem. 2016;235:603–13.

    Article  CAS  Google Scholar 

  17. Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013;3(1):1–9.

    Article  Google Scholar 

  18. Kim S, Ko J, Lim HB. Application of magnetic and core-shell nanoparticles to determine enrofloxacin and its metabolite using laser induced fluorescence microscope. Anal Chim Acta. 2013;771:37–41.

    Article  CAS  Google Scholar 

  19. Ke R, Yang W, Xia X, Xu Y, Li Q. Tandem conjugation of enzyme and antibody on silica nanoparticle for enzyme immunoassay. Anal Biochem. 2010;406(1):8–13.

    Article  CAS  Google Scholar 

  20. Chen L, Zhang Z, Zhang X, Fu A, Xue P, Yan R. A novel chemiluminescence immunoassay of staphylococcal enterotoxin B using HRP-functionalised mesoporous silica nanoparticle as label. Food Chem. 2012;135(1):208–12.

    Article  CAS  Google Scholar 

  21. Tang D, Su B, Tang J, Ren J, Chen G. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem. 2010;82(4):1527–34.

    Article  CAS  Google Scholar 

  22. Wu Y, Chen C, Liu S. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem. 2009;81(4):1600–7.

    Article  CAS  Google Scholar 

  23. Lu Z, Wang G, Zhuang J, Yang W. Effects of the concentration of tetramethylammonium hydroxide peptizer on the synthesis of Fe3O4/SiO2 core/shell nanoparticles. Colloids Surf A Physicochem Eng Asp. 2006;278(1–3):140–3.

    Article  CAS  Google Scholar 

  24. Bagwe RP, Yang C, Hilliard LR, Tan W. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir. 2004;20(19):8336–42.

    Article  CAS  Google Scholar 

  25. Tapec R, Zhao XJ, Tan W. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol. 2002;2(2):405–9.

    Article  CAS  Google Scholar 

  26. Sun Q, Zhao G, Dou W. An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sens Actuators B Chem. 2016;226:69–75.

    Article  CAS  Google Scholar 

  27. Shukla S, Leem H, Kim M. Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Anal Bioanal Chem. 2011;401(8):2581–90.

    Article  CAS  Google Scholar 

  28. Shim W-B, Song J-E, Mun H, Chung D-H, Kim M-G. Rapid colorimetric detection of Salmonella typhimurium using a selective filtration technique combined with antibody–magnetic nanoparticle nanocomposites. Anal Bioanal Chem. 2014;406(3):859–66.

    Article  CAS  Google Scholar 

  29. Wen C-Y, Hu J, Zhang Z-L, Tian Z-Q, Ou G-P, Liao Y-L, Li Y, Xie M, Sun Z-Y, Pang D-W. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres. Anal Chem. 2013;85(2):1223–30.

    Article  CAS  Google Scholar 

  30. Fei J, Dou W, Zhao G. A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta. 2015;182(13–14):2267–75.

    Article  CAS  Google Scholar 

  31. Soria MC, Soria MA, Bueno DJ, Terzolo HR. Comparison of 3 culture methods and PCR assays for Salmonella gallinarum and Salmonella pullorum detection in poultry feed. Poult Sci. 2013;92(6):1505–15.

    Article  CAS  Google Scholar 

  32. Ho J-aA, Zeng S-C, Tseng W-H, Lin Y-J, C-h C. Liposome-based immunostrip for the rapid detection of Salmonella. Anal Bioanal Chem. 2008;391(2):479–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of Zhejiang Province (LY17C2000003), the Food Science and Engineering the most important discipline of Zhejiang Province (JYTSP20141062), the Zhejiang Public Innovation Platform Analysis and Testing Project (2015C37023), the Talent Training Provincial Superior Paper Funded Project (1110JY1412001P), the Technological Innovation Project of Zhejiang Gongshang University (CX201610024, CX201610019), the Graduate Research Innovation Fund Project of Zhejiang Gongshang University, and the Plans of College Students in Zhejiang Province and Technology Innovation Activities (Acrobatic Tender Grass Talent Programme) Project (1110JQ4212048G, 1110KZN0213112G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchao Dou or Guangying Zhao.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 90.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Dou, W. & Zhao, G. Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles. Anal Bioanal Chem 409, 4139–4147 (2017). https://doi.org/10.1007/s00216-017-0361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0361-3

Keywords

Navigation