Skip to main content
Log in

Comparison between non-invasive methods used on paintings by Goya and his contemporaries: hyperspectral imaging vs. point-by-point spectroscopic analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of non-invasive techniques for the characterization of pigments is crucial in order to preserve the integrity of the artwork. In this sense, the usefulness of hyperspectral imaging was demonstrated. It allows pigment characterization of the whole painting. However, it also sometimes requires the complementation of other point-by-point techniques. In the present article, the advantages of hyperspectral imaging over point-by-point spectroscopic analysis were evaluated. For that purpose, three paintings were analysed by hyperspectral imaging, handheld X-ray fluorescence and handheld Raman spectroscopy in order to determine the best non-invasive technique for pigment identifications. Thanks to this work, the main pigments used in Aragonese artworks, and especially in Goya’s paintings, were identified and mapped by imaging reflection spectroscopy. All the analysed pigments corresponded to those used at the time of Goya. Regarding the techniques used, the information obtained by the hyperspectral imaging and point-by-point analysis has been, in general, different and complementary. Given this fact, selecting only one technique is not recommended, and the present work demonstrates the usefulness of the combination of all the techniques used as the best non-invasive methodology for the pigments’ characterization. Moreover, the proposed methodology is a relatively quick procedure that allows a larger number of Goya’s paintings in the museum to be surveyed, increasing the possibility of obtaining significant results and providing a chance for extensive comparisons, which are relevant from the point of view of art history issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Madariaga JM. Raman spectroscopy in art and archaeology. J Raman Spectrosc. 2010;41:1389–93.

    Article  Google Scholar 

  2. Duran A, Jimenez de Haro MC, Perez-Rodriguez JL, Franquelo ML, Herrera LK, Justo A. Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation-high-resolution X-ray powder diffraction and conventional spectroscopy-chromatography. Archaeometry. 2010;52:286–307.

    Article  CAS  Google Scholar 

  3. Pérez-Arantegui J, Pardos C, Abad J, García J. Microcharacterization of a natural blue pigment used in wall paintings during the Romanesque period in northern Spain. Microsc Microanal. 2013;19:1645–52.

    Article  Google Scholar 

  4. Schreiner M, Melcher M, Uhlir K. Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage. Anal Bioanal Chem. 2007;387:737–47.

    Article  CAS  Google Scholar 

  5. Charlton MF. Handheld XRF for art and archaeology (studies in archaeological sciences 3). J Archaeol Sci. 2013;40:3058–9.

    Article  Google Scholar 

  6. Beck L, Rousselière H, Castaing J, Duran A, Lebon M, Moignard B, Plassard F. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art. Talanta. 2014;129:459–64.

    Article  CAS  Google Scholar 

  7. Simsek G, Casadio F, Colomban P, Bellot-Gurlet L, Faber KT, Zelleke G, Milande V, Moinet E. On-site identification of early BÖTTGER red stoneware made at Meissen using portable XRF: 1, body analysis. J Am Ceram Soc. 2014;97:2745–54.

    Article  CAS  Google Scholar 

  8. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM. Comparative study of mobile Raman instrumentation for art analysis. Anal Chim Acta. 2007;588:108–16.

    Article  CAS  Google Scholar 

  9. Mounier A, Denoël C, Daniel F. Material identification of three French medieval illuminations of the XVIth century by hyperspectral imaging (Treasury of Bordeaux Cathedral, France). Color Res Appl. 2016;41:302–7.

    Article  Google Scholar 

  10. Ricciardi P, Delaney JK. Combining visible and infrared imaging spectroscopy with site specific, in-situ techniques for material identification and mapping. Revista de historia da arte. 2011;1:253–61.

    Google Scholar 

  11. Mansfield JR, Attas M, Majzels C, Cloutis E, Collins C, Mantsch HH. Near infrared spectroscopic reflectance imaging: a new tool in art conservation. Vib Spectrosc. 2002;28:59–66.

    Article  CAS  Google Scholar 

  12. Attas M, Cloutis E, Collins C, Goltz D, Majzels C, Mansfield JR, Mantsch HH. Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J Cult Herit. 2003;4:127–36.

    Article  Google Scholar 

  13. S. Michalski, The lighting decision. Fabric of an Exhibition, Canadian Conservation Institute, Ottawa, 1997.

  14. Daniel F, Mounier A, Pérez-Arantegui J, Pardos C, Prieto-Taboada N, Fdez-Ortiz de Vallejuelo S, Castro K. Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain). Microchem J. 2016;126:113–20.

    Article  CAS  Google Scholar 

  15. Lomba C, Bozal V. Goya y El Mundo Moderno. Barcelona: Lunwerg; 2008.

    Google Scholar 

  16. A. Ansón Navarro, Goya y Aragón. Familia, Amistades y Encargos Artísticos, Caja de Ahorros de la Inmaculada, Zaragoza, 1995.

  17. A. Ansón Navarro, B. Bartolomé, J.M. de la Mano, I. Gutiérrez Pastor, A.E. Pérez Sánchez, Francisco Bayeu, 1734–1795. Exposición Zaragoza, 18 Abril - 19 Mayo 1996. Centro De Exposiciones y Congresos, Museo e Instituto De Humanidades Camón Aznar, Ibercaja, Zaragoza, 1996.

  18. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Fernández LÁ, Madariaga JM. On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal Bioanal Chem. 2005;382:248–58.

    Article  CAS  Google Scholar 

  19. Pérez-Alonso M, Castro K, Madariaga JM. Vibrational spectroscopic techniques for the analysis of artefacts with historical, artistic and archaeological value. Curr Anal Chem. 2006;2:89–100.

    Article  Google Scholar 

  20. Bell IM, Clark RJH, Gibbs PJ. Raman spectroscopic library of natural and synthetic pigments (pre- ≈1850 AD). Spectrochim Acta A. 1997;53:2159–79.

    Article  Google Scholar 

  21. R.T. Downs, The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, In: Anonymous Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, , 2006, pp. O03–13.

  22. Schmid FU. Some observations on Artists’ Palettes. The Art Bull. 1958;40:334–6.

    Article  Google Scholar 

  23. Eastaugh N, Walsh V, Chaplin T, Siddall R. The pigment compendium: a dictionary of historical pigments. Oxford: Butterworth Heinemann; 2008.

    Google Scholar 

  24. Bruquetas R, Antelo T, Arteaga Á, Borrego P, Bueso M, del Egido M, Gabaldón A, Gómez M, Martín de Hijas C, Vega C, Juanes D. Estudio técnico de Fernando VII a caballo de Francisco de Goya. Bienes Cult. 2008;8:117–32.

    Google Scholar 

  25. Chillón Domínguez MC. Investigación científico-documental de un retrato de Agustina De Aragón. Barcelona: ACTIO Arte y Ciencia; 2013.

    Google Scholar 

  26. Lussier SM, Smith GD. A review of the phenomenon of lead white darkening and its conversion treatment. Stud Conserv. 2007;52:41–53.

    Article  Google Scholar 

  27. Correia AM, Clark RJH, Ribeiro MIM, Duarte MLTS. Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). J Raman Spectrosc. 2007;38:1390–405.

    Article  CAS  Google Scholar 

  28. Delaney JK, Ricciardi P, Deming Glinsman L, Facini M, Thoury M, Palmer M, de la Rie ER. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. SiC. 2014;59(2):91–101.

    Article  CAS  Google Scholar 

  29. R. N. Clark, 1999, Spectroscopy of rocks and minerals, and principles of spectroscopy, in: A.N. Rencz, ed. Manual of Remote Sensing, Remote sensing for the Earth Sciences, New York: John Wiley and Sons, 3, 3–58.

  30. Cohen R. Goya, la Boda, the Royal Modello. London: Trafalgar Fine Art Publications Ltd.; 1988.

    Google Scholar 

  31. M.T. Rodríguez Torres, Francisco de Gota, Retratos de amigos: Zapater y Moratín, B’06. 2 (2007) 145–179.

  32. M.B. Mena Marqués, G. Maurer, M.C. Garrido Pérez, J. García-Máiquez, E. Mora Sánchez, E. Quintana Calamita, C. Quintanilla Garrido, Goya: el “Dos” y el “Tres de mayo de 1808 en Madrid”. Estudio y restauración, Bol. Mus. Prado. 27 (2009) 129–149.

  33. D.C. Rich, F. Schmid, The art of Goya : paintings, drawings and prints, The Art Institute of Chicago, Chicago, 1941.

  34. Niederland WG. Goya’s illness: a case of lead encephalopathy? N Y State J Med. 1972;72:413–8.

    Google Scholar 

  35. Garrido MC. El retrato de La condesa de Chinchón (1800): estudio técnico. Bol Mus Prado. 2003;21:44–55.

    Google Scholar 

  36. R. de Piles, Les Premiers Eléments de Peinture Pratique, Jombert’s edition, 1767, Paris, 1684.

  37. M.D. Gayo García, La azurita identificada en pinturas murales al fresco de Goya, in: Investigación en Conservación y Restauración: II Congreso del Grupo Español del IIC, Barcelona, 2005, pp. 18.

  38. E. Jansson, A. Brown, ‘Portrait of a Lady’ or ‘Portrait of Dona Joaquina Candado’ by a follower of Francisco de Goya, 2014–15: Conservation and Art Historical Analysis. The Courtauld Institute of Art: Conservation and Art Historical Analysis (2014).

  39. Bull D, Krekeler A, Alfed M, Dik J, Janssens K. An intrusive portrait by Goya. Burlingt Mag. 2011;153:668–73.

    Google Scholar 

  40. Institute of Applied Physics (IFAC), Fiber optics reflectance spectra (FORS) of pictorial materials in the 270–1700 nm range, http://fors.ifac.cnr.it/index.php. (2011).

  41. Cosentino A. FORS spectral database of historical pigments in different binders. e-conservation Journal. 2014;2:57–68.

  42. Legrand S, Vanmeert F, Van der Snickt G, Alfeld M, De Nolf W, Dik J, Janssens K. Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography. Heritage Science. 2014;2:13–23.

    Article  Google Scholar 

  43. Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K. A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom. 2013;28:760–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This LaScArBx project is a research program supported by the ANR (ANR-10-LABX-52).This study was led within the framework of a 2013–2014 project financed by the Communauté de Travail des Pyrénées–Comunidad de Trabajo de los Pirineos, with the partnership of three regions: Aragón (IUCA-Universidad de Zaragoza), Basque Country (Universidad del País Vasco, CTP2012-P10) and the Aquitaine region (IRAMAT-CRPAA, CNRS-University Bordeaux Montaigne). Part of this research has been financially supported by the CTQ2011-24882 project of the Spanish Ministry of Science and Innovation. Thanks also to the Museum of Zaragoza, and especially to Marisa Arguis and Carmen Gallego from the Painting Department. N. Prieto-Taboada is grateful to the University of the Basque Country (UPV/EHU) for her post-doctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floréal Daniel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, F., Mounier, A., Pérez-Arantegui, J. et al. Comparison between non-invasive methods used on paintings by Goya and his contemporaries: hyperspectral imaging vs. point-by-point spectroscopic analysis. Anal Bioanal Chem 409, 4047–4056 (2017). https://doi.org/10.1007/s00216-017-0351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0351-5

Keywords

Navigation