Skip to main content
Log in

Electrochemical simulation of biotransformation reactions of citrinin and dihydroergocristine compared to UV irradiation and Fenton-like reaction

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mycotoxins occur widely in foodstuffs and cause a variety of mold-related health risks to humans and animals. Elucidation of the metabolic fate of mycotoxins and the growing number of newly discovered mycotoxins have enhanced the demand for fast and reliable simulation methods. The viability of electrochemistry coupled with mass spectrometry (EC/ESI-MS), Fenton-like oxidation, and UV irradiation for the simulation of oxidative phase I metabolism of the mycotoxins citrinin (CIT) and dihydroergocristine (DHEC) was investigated. The specific reaction products are compared with metabolites produced by human and rat liver microsomes in vitro. Depending on the applied potential between 0 and 2000 mV vs. Pd/H2 by using a flow-through cell, CIT and DHEC are oxidized to various products. Besides dehydrogenation and dealkylation reactions, several hydroxylated DHEC and CIT species are produced by EC and Fenton-like reaction, separated and analyzed by LC-MS/MS and ESI-HRMS. Compared to reaction products from performed microsomal incubations, several mono- and dihydroxylated DHEC species were found to be similar to the reaction products of EC, Fenton-like reaction, and UV-induced oxidation. Consequentially, nonmicrosomal efficient and economic simulation techniques can be useful in early-stage metabolic studies, even if one-to-one simulation is not always feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FAO. Worldwide regulations for mycotoxins in food and feed in 2003. Rome: FAO Food Nutr Pap; 2004. p. 81.

    Google Scholar 

  2. Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.

    Article  CAS  Google Scholar 

  3. Petroczi A, Nepusz T, Taylor G, Naughton DP. Network analysis of the RASFF database: a mycotoxin perspective. World Mycotoxin J. 2011;4(3):329–38.

    Article  CAS  Google Scholar 

  4. van Egmond HP, Schothorst RC, Jonker MA. Regulations relating to mycotoxins in food. Anal Bioanal Chem. 2007;389(1):147–57.

    Article  CAS  Google Scholar 

  5. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004;104(9):3947–80.

    Article  CAS  Google Scholar 

  6. Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol. 2001;14(6):611–50.

    Article  CAS  Google Scholar 

  7. Pfeiffer E, Schebb NH, Podlech J, Metzler M. Novel oxidative in vitro metabolites of the mycotoxins alternariol and alternariol methyl ether. Mol Nutr Food Res. 2007;51(3):307–16.

    Article  CAS  Google Scholar 

  8. Lohmann W, Karst U. Biomimetic modeling of oxidative drug metabolism. Anal Bioanal Chem. 2008;391(1):79–96.

    Article  CAS  Google Scholar 

  9. van Leeuwen SM, Blankert B, Kauffmann JM, Karst U. Prediction of clozapine metabolism by on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem. 2005;382(3):742–50.

    Article  Google Scholar 

  10. Wang S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments. 2008;76(3):714–20.

    Article  CAS  Google Scholar 

  11. Dong QF, Manns DC, Feng GP, Yue TL, Churey JJ, Worobo RW. Reduction of Patulin in apple cider by UV radiation. J Food Protect. 2010;73(1):69–74.

    Article  CAS  Google Scholar 

  12. Espejo F. Effect of photo-Fenton reaction on physicochemical parameters in white wine and its influence on ochratoxin A contents using response surface methodology. Eur Food Res Technol. 2016;242(1):91–106.

    Article  CAS  Google Scholar 

  13. Koppen R, Riedel J, Proske M, Drzymala S, Rasenko T, Durmaz V, et al. Photochemical trans-/cis-isomerization and quantitation of zearalenone in edible oils. J Agr Food Chem. 2012;60(47):11733–40.

    Article  Google Scholar 

  14. Wadworth AN, Chrisp P. Co-dergocrine mesylate—a review of its pharmacodynamics and pharmacokinetic properties and therapeutic use in age-related cognitive decline. Drug Aging. 1992;2(3):153–73.

    Article  CAS  Google Scholar 

  15. Flieger M, Wurst M, Shelby R. Ergot alkaloids—sources, structures and analytical methods. Folia Microbiol. 1997;42(1):3–29.

    Article  CAS  Google Scholar 

  16. Frisvad JC, Thrane U, Samson RA, Pitt JI. Important mycotoxins and the fungi which produce them. Adv Exp Med Biol. 2006;571:3–31.

  17. Böhm J, De Saeger S, Edler L, Fink-Gremmels J, Mantle P, Peraica M, et al. Scientific opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA. 2012;10(3):1–82.

    Google Scholar 

  18. Monch B, Kraus W, Koppen R, Emmerling F. The different conformations and crystal structures of dihydroergocristine. J Mol Struct. 2016;1105:389–95.

    Article  Google Scholar 

  19. Simon H, Hoffmann G, Hubner F, Humpf HU, Karst U. Electrochemical simulation of metabolic reactions of the secondary fungal metabolites alternariol and alternariol methyl ether. Anal Bioanal Chem. 2016;408(10):2471–83.

    Article  CAS  Google Scholar 

  20. Bazin I, Faucet-Marquis V, Monje MC, El Khoury M, Marty JL, Pfohl-Leszkowicz A. Impact of pH on the stability and the cross-reactivity of ochratoxin A and citrinin. Toxins. 2013;5(12):2324–40.

    Article  CAS  Google Scholar 

  21. Dunn BB, Stack ME, Park DL, Joshi A, Friedman L, King RL. Isolation and identification of dihydrocitrinone, a urinary metabolite of citrinin in rats. J Toxicol Environ Health. 1983;12(2–3):283–9.

    Article  CAS  Google Scholar 

  22. Ali N, Blaszkewicz M, Degen GH. Occurrence of the mycotoxin citrinin and its metabolite dihydrocitrinone in urines of German adults. Arch Toxicol. 2015;89(4):573–8.

    Article  CAS  Google Scholar 

  23. Clark BR, Capon RJ, Lacey E, Tennant S, Gill JH. Citrinin revisited: from monomers to dimers and beyond. Org Biomol Chem. 2006;4(8):1520–8.

    Article  CAS  Google Scholar 

  24. Blaszkewicz M, Munoz K, Degen GH. Methods for analysis of citrinin in human blood and urine. Arch Toxicol. 2013;87(6):1087–94.

    Article  CAS  Google Scholar 

  25. Bicalho B, Giolo JM, Lilla S, De Nucci G. Identification and human pharmacokinetics of dihydroergotoxine metabolites in man: preliminary results. Biopharm Drug Dispos. 2008;29(1):17–28.

    Article  CAS  Google Scholar 

  26. Peyronneau MA, Delaforge M, Riviere R, Renaud JP, Mansuy D. High-affinity of ergopeptides for cytochromes P450 3A—importance of their peptide moiety for P450 recognition and hydroxylation of bromocriptine. Eur J Biochem. 1994;223(3):947–56.

    Article  CAS  Google Scholar 

  27. Jurva U, Wikstrom HV, Weidolf L, Bruins AP. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun Mass Sp. 2003;17(8):800–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Boris Neumann (Proteome Factory AG, Berlin, Germany) for the HRMS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Koch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, J., Haase, H. & Koch, M. Electrochemical simulation of biotransformation reactions of citrinin and dihydroergocristine compared to UV irradiation and Fenton-like reaction. Anal Bioanal Chem 409, 4037–4045 (2017). https://doi.org/10.1007/s00216-017-0350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0350-6

Keywords

Navigation