Skip to main content
Log in

Microwave-assisted deglycosylation for rapid and sensitive analysis of N-glycans via glycosylamine derivatization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A rapid and sensitive N-glycan profiling strategy for MALDI-MS incorporating the use of deglycosylation with microwave assistance and the co-derivatization of glycosylamine labeling with tris(2,4,6-trimethoxyphenyl)phosphonium acetic acid N-hydroxysuccinimide ester (TMPP-Ac-OSu) and methylamidation has been developed in this work. Notably, highly efficient release and tagging of N-glycans from ribonuclease B was achieved in less than 90 min, providing up to 35-fold enhancement of MALDI-MS sensitivity with comparison to underivatized N-glycans. After further validation with other two standard glycoproteins (ovalbumin and bovine fetuin), the proposed strategy was applied to human serum for preliminary pathological analysis of N-glycans between healthy and lung cancer individuals. As a result, significant differences (T test p value <0.01) of 6 glycan structures were determined from 54 detected N-glycan structures with only 50 nL of loading amount and further confirmed through PCA and ROC (AUC) analyses between two sample sets. Subsequently, the trend of each lung cancer stage and controls in expression of the selected glycans was implemented with T test and box-plots. Accordingly, these structures can be used as potential lung cancer glycan-based biomarkers and for further definition of cancer progression highlighting the ability of proposed method to rapidly and efficiently analyze N-glycome present in human serum.

MALDI-TOF MS analysis of N-glycans by microwave-assisted deglycosylation and glycosylamine derivatization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AUC:

Area under the ROC curve; T test Student’s t test

DHB:

2,5-Dihydroxybenzoic acid

DMSO:

Dimethyl sulfoxide

MALDI-MS:

Matrix-assisted laser desorption/ionization mass spectrometry

MCC:

Microcrystalline cellulose

NP-HPLC:

Normal phase high-performance liquid chromatography

NP-40:

Octylphenoxypolyethoxyethanol

PCA:

Principal component analysis

PNGase F:

Peptide-N-glycosidase F

PyAOP:

(7-Azabenzotriazol-1-yloxy) trispyrrolidinophosphonium hexafluorophosphate

RNase B:

Ribonuclease B

ROC:

Receiver operating characteristic curve

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TFA:

Trifluoroacetic acid

TMPP-Ac-OSu:

Tris(2,4,6-trimethoxyphenyl)phosphonium acetic acid N-hydroxysuccinimide ester

References

  1. Wacker C, Berger CN, Girard P, Meier R. Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur J Pharm Biopharm. 2011;79(3):503–7.

    Article  CAS  Google Scholar 

  2. Mechref Y, Hu Y, Garcia A, Zhou S, Desantos-Garcia JL, Hussein A. Defining putative glycan cancer biomarkers by MS. Bioanalysis. 2012;4(20):2457–69.

    Article  CAS  Google Scholar 

  3. Ruhaak LR, Miyamoto S, Lebrilla CB. Developments in the identification of glycan biomarkers for the detection of cancer. Mol Cell Proteomics. 2013;12(4):846–55.

    Article  CAS  Google Scholar 

  4. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36.

    Article  CAS  Google Scholar 

  5. Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 1984;131(2):209–17.

    Article  CAS  Google Scholar 

  6. Park Y, Lebrilla CB. Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. Mass Spectrom Rev. 2005;24(2):232–64.

    Article  CAS  Google Scholar 

  7. Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001–2002. Mass Spectrom Rev. 2008;27(2):125–201.

    Article  CAS  Google Scholar 

  8. Liu X, Zhang G, Chan K, Li J. Microwave-assisted Kochetkov amination followed by permanent charge derivatization: a facile strategy for glycomics. Chem Commun. 2010;46(39):7424–6.

    Article  CAS  Google Scholar 

  9. Kamoda S, Nakano M, Ishikawa R, Suzuki S, Kakehi K. Rapid and sensitive screening of N-glycans as 9-fluorenylmethyl derivatives by high-performance liquid chromatography: a method which can recover free oligosaccharides after analysis. J Proteome Res. 2005;4(1):146–52.

    Article  CAS  Google Scholar 

  10. Lauber MA, Yu Y-Q, Brousmiche DW, Hua Z, Koza SM, Magnelli P, et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem. 2015;87(10):5401–9.

    Article  CAS  Google Scholar 

  11. Sandoval WN, Arellano F, Arnott D, Raab H, Vandlen R, Lill JR. Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. Int J Mass Spectrom. 2007;259(1–3):117–23.

    Article  CAS  Google Scholar 

  12. Szabo Z, Guttman A, Karger BL. Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem. 2010;82(6):2588–93.

    Article  CAS  Google Scholar 

  13. Palm AK, Novotny MV. A monolithic PNGase F enzyme microreactor enabling glycan mass mapping of glycoproteins by mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(12):1730–8.

    Article  CAS  Google Scholar 

  14. Krenkova J, Lacher NA, Svec F. Multidimensional system enabling deglycosylation of proteins using a capillary reactor with peptide-N-glycosidase F immobilized on a porous polymer monolith and hydrophilic interaction liquid chromatography–mass spectrometry of glycans. J Chromatogr A. 2009;1216(15):3252–9.

    Article  CAS  Google Scholar 

  15. Collins JM, Leadbeater NE. Microwave energy: a versatile tool for the biosciences. Org Biomol Chem. 2007;5(8):1141–50.

    Article  CAS  Google Scholar 

  16. Liu X, Qiu H, Lee RK, Chen W, Li J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both α2,3- and α2,6-linked sialic acids. Anal Chem. 2010;82(19):8300–6.

    Article  CAS  Google Scholar 

  17. Vaezzadeh AR, Deshusses JMP, Waridel P, François P, Zimmermann-Ivol CG, Lescuyer P, et al. Accelerated digestion for high-throughput proteomics analysis of whole bacterial proteomes. J Microbiol Meth. 2010;80(1):56–62.

    Article  CAS  Google Scholar 

  18. Zhou H, Briscoe AC, Froehlich JW, Lee RS. PNGase F catalyzes de-N-glycosylation in a domestic microwave. Anal Biochem. 2012;427(1):33–5.

    Article  CAS  Google Scholar 

  19. Oyama T, Yodohsi M, Yamane A, Kakehi K, Hayakawa T, Suzuki S. Rapid and sensitive analyses of glycoprotein-derived oligosaccharides by liquid chromatography and laser-induced fluorometric detection capillary electrophoresis. J Chromatogr B. 2011;879(27):2928–34.

    Article  CAS  Google Scholar 

  20. Yet MG, Chin CC, Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem. 1988;263(1):111–7.

    CAS  Google Scholar 

  21. Green ED, Adelt G, Baenziger JU, Wilson S, Van Halbeek H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem. 1988;263(34):18253–68.

    CAS  Google Scholar 

  22. Berman E, Walters DE, Allerhand A. Structure and dynamic behavior of the oligosaccharide side chain of bovine pancreatic ribonuclease B. Application of carbon 13 nuclear magnetic resonance spectroscopy. J Biol Chem. 1981;256(8):3853–7.

    CAS  Google Scholar 

  23. Chen W, Lee PJ, Shion H, Ellor N, Gebler JC. Improving de novo sequencing of peptides using a charged tag and C-terminal digestion. Anal Chem. 2007;79(4):1583–90.

    Article  CAS  Google Scholar 

  24. Liu X, Li X, Chan K, Zou W, Pribil P, Li X-F, et al. “One-Pot” methylation in glycomics application: esterification of sialic acids and permanent charge construction. Anal Chem. 2007;79(10):3894–900.

    Article  CAS  Google Scholar 

  25. Arnold JN, Saldova R, Hamid UMA, Rudd PM. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics. 2008;8(16):3284–93.

    Article  CAS  Google Scholar 

  26. An HJ, Miyamoto S, Lancaster KS, Kirmiz C, Li B, Lam KS, et al. Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res. 2006;5(7):1626–35.

    Article  CAS  Google Scholar 

  27. Kirmiz C, Li B, An HJ, Clowers BH, Chew HK, Lam KS, et al. A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics. 2007;6(1):43–55.

    Article  CAS  Google Scholar 

  28. Alley WR, Madera M, Mechref Y, Novotny MV. Chip-based reversed-phase liquid chromatography−mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem. 2010;82(12):5095–106.

    Article  CAS  Google Scholar 

  29. Barone R, Sturiale L, Garozzo D. Mass spectrometry in the characterization of human genetic N-glycosylation defects. Mass Spectrom Rev. 2009;28(3):517–42.

    Article  CAS  Google Scholar 

  30. Kyselova Z, Mechref Y, Al Bataineh MM, Dobrolecki LE, Hickey RJ, Vinson J, et al. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res. 2007;6(5):1822–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (20905027 and 81402198).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yawei Lin or Xin Liu.

Ethics declarations

The study was carried out in accordance with the Helsinki Declaration and informed consents were obtained from the participants in accordance with the study protocols approved by the Ethics Committee of Huazhong University of Science and Technology.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, C., Luo, J. et al. Microwave-assisted deglycosylation for rapid and sensitive analysis of N-glycans via glycosylamine derivatization. Anal Bioanal Chem 409, 4027–4036 (2017). https://doi.org/10.1007/s00216-017-0346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0346-2

Keywords

Navigation