Analytical and Bioanalytical Chemistry

, Volume 409, Issue 14, pp 3497–3505 | Cite as

Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay

  • Eoin ClancyEmail author
  • Martina Burke
  • Vahid Arabkari
  • Thomas Barry
  • Helena Kelly
  • Róisín M. Dwyer
  • Michael J. Kerin
  • Terry J. Smith
Paper in Forefront


The detection and profiling of microRNAs are of great interest in disease diagnosis and prognosis. In this paper, we present a method for the rapid amplification-free detection of microRNAs from total RNA samples. In a two-step sandwich assay approach, fluorescently labeled reporter probes were first hybridized with their corresponding target microRNAs. The reaction mix was then added to a microarray to enable their specific capture and detection. Reporter probes were Tm equalized, enabling specificity by adjusting the length of the capture probe while maintaining the stabilizing effect brought about by coaxial base stacking. The optimized assay can specifically detect microRNAs in spiked samples at concentrations as low as 1 pM and from as little as 100 ng of total RNA in 2 h. The detection signal was linear between 1 and 100 pM (R2 = 0.99). Our assay data correlated well with results generated by qPCR when we profiled a select number of breast cancer related microRNAs in a total RNA sample.


MicroRNA Microarray Sandwich Assay Amplification-free detection 



This work was supported by Science Foundation Ireland as part of the Biomedical Diagnostics Institute Centre for Science Excellence and Technology (10/CE/B1821).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2017_298_MOESM1_ESM.pdf (129 kb)
ESM 1 (PDF 128 kb)


  1. 1.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.Google Scholar
  2. 2.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.Google Scholar
  3. 3.
    Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. a comprehensive review. EMBO Mol Med. 2012;4(3):143.Google Scholar
  4. 4.
    Price C, Chen J. MicroRNAs in cancer biology and therapy: current status and perspectives. Genes Dis. 2014;1(1):53–63.Google Scholar
  5. 5.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating MicroRNA. Nucleic Acids Res. 2011;1;39(16):7223-33Google Scholar
  6. 6.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108(12):5003–8.Google Scholar
  7. 7.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinform. 2015;13(1):17–24.Google Scholar
  8. 8.
    Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? 2012;110(3):483–495Google Scholar
  9. 9.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.Google Scholar
  10. 10.
    Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10(5):490–7.Google Scholar
  11. 11.
    Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004;14(12):2486–94.Google Scholar
  12. 12.
    Liu C-G, Calin GA, Volinia S, Croce CM. MicroRNA expression profiling using microarrays. Nat Protoc. 2008;3(4):563–78.Google Scholar
  13. 13.
    Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling micorRNA expression in biological samples. Angew Chem Int Ed. 2008;47(4):644–52.Google Scholar
  14. 14.
    Ragan C, Zuker M, Ragan MA. Quantitative prediction of miRNA–mRNA interaction based on equilibrium concentrations. PLoS Comput Biol. 2011;7(2):e1001090.CrossRefGoogle Scholar
  15. 15.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.Google Scholar
  16. 16.
    Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE. 2009;4(7):e6229.CrossRefGoogle Scholar
  17. 17.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.Google Scholar
  18. 18.
    Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Bios Bioelectron. 2013;49:164–9.Google Scholar
  19. 19.
    Hong C-Y, Chen X, Liu T, Li J, Yang H-H, Chen J-H. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron. 2013;50:132–6.Google Scholar
  20. 20.
    Šípová H, Zhang S, Dudley AM, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem. 2010;82(24):10110–5.CrossRefGoogle Scholar
  21. 21.
    Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron. 2008;24(4):917–22.Google Scholar
  22. 22.
    Wang Y, Zheng D, Tan Q, Wang MX, Gu L-Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nano. 2011;6(10):668–74.Google Scholar
  23. 23.
    He J, Zhu J, Gong C, Qi J, Xiao H, Jiang B. Label-free direct detection of miRNAs with poly-silicon nanowire biosensors. PLoS ONE. 2016;10(12):e0145160.CrossRefGoogle Scholar
  24. 24.
    Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron. 2009;24(8):2504–8.CrossRefGoogle Scholar
  25. 25.
    Arata H, Komatsu H, Han A, Hosokawa K, Maeda M. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization. Analyst. 2012;137(14):3234–7.Google Scholar
  26. 26.
    Duan D, Zheng K-x, Shen Y, Cao R, Jiang L, Lu Z. Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res. 2011; 39(22): e154.Google Scholar
  27. 27.
    Ueno T, Funatsu T. Label-free quantification of microRNAs using ligase-assisted sandwich hybridization on a DNA microarray. PLoS ONE. 2014;9(3):e90920.Google Scholar
  28. 28.
    Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251(3):499–505.Google Scholar
  29. 29.
    Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.Google Scholar
  30. 30.
    Ng EKO, Li R, Shin VY, Jin HC, Leung CPH, Ma ESK. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE. 2013;8(1):e53141.Google Scholar
  31. 31.
    Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11(8):809–15.Google Scholar
  32. 32.
    Kelly H, Downing T, Tuite NL, Smith TJ, Kerin MJ, Dwyer RM. Cross platform standardisation of an experimental pipeline for use in the identification of dysregulated human circulating MiRNAs. PLoS ONE. 2015;10(9):e0137389.Google Scholar
  33. 33.
    Satterfield BC, Caplan MR, West JAA. Tentacle probe sandwich assay in porous polymer monolith improves specificity, sensitivity and kinetics. Nucleic Acids Res. 2008;36(19):e129.Google Scholar
  34. 34.
    Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34(2):564–74.CrossRefGoogle Scholar
  35. 35.
    Protozanova E, Yakovchuk P, Frank-Kamenetskii MD. Stacked–unstacked equilibrium at the nick site of DNA. J Mol Biol. 2004;342(3):775–85.CrossRefGoogle Scholar
  36. 36.
    Peterson AW, Heaton RJ, Georgiadis RM. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 2001;29(24):5163–8.CrossRefGoogle Scholar
  37. 37.
    Shchepinov MS, Case-Green SC, Southern EM. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 1997;25(6):1155–61.Google Scholar
  38. 38.
    Rao AN, Grainger DW. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomat Sci. 2014;2(4):436–71.CrossRefGoogle Scholar
  39. 39.
    Sobek J, Aquino C, Weigel W, Schlapbach R. Drop drying on surfaces determines chemical reactivity—the specific case of immobilization of oligonucleotides on microarrays. BMC Biophys. 2013;6(1):1–14.CrossRefGoogle Scholar
  40. 40.
    Xing Y, Borguet E. Specificity and sensitivity of fluorescence labeling of surface species. Langmuir. 2007;23(2):684–8.CrossRefGoogle Scholar
  41. 41.
    Zhdanov VP. Conditions of appreciable influence of microRNA on a large number of target mRNAs. Molec Biosyst. 2009;5(6):638–43.Google Scholar
  42. 42.
    Liu J, Williams BA, Gwirtz RM, Wold BJ, Quake S. Enhanced signals and fast nucleic acid hybridization by microfluidic chaotic mixing. Angew Chem Int Ed. 2006;45(22):3618–23.CrossRefGoogle Scholar
  43. 43.
    Schaupp CJ, Jiang G, Myers TG, Wilson MA. Active mixing during hybridization improves the accuracy and reproducibility of microarray results. BioTechniques. 2005;38(1):117–9.CrossRefGoogle Scholar
  44. 44.
    Arata H, Komatsu H, Hosokawa K, Maeda M. Rapid and sensitive miroRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip. PLoS ONE. 2012;7(e48329).Google Scholar
  45. 45.
    Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88.Google Scholar
  46. 46.
    Wang H, Ach RA, Curry B. Direct and sensitive miRNA profiling from low-input total RNA. RNA. 2006;13:1–9.CrossRefGoogle Scholar
  47. 47.
    Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Eoin Clancy
    • 1
    • 2
    Email author
  • Martina Burke
    • 1
    • 2
  • Vahid Arabkari
    • 1
    • 3
  • Thomas Barry
    • 4
  • Helena Kelly
    • 4
  • Róisín M. Dwyer
    • 5
  • Michael J. Kerin
    • 5
  • Terry J. Smith
    • 1
    • 2
  1. 1.Molecular Diagnostics Research Group, School of Natural Sciences and National Centre for Biomedical Engineering ScienceNUI GalwayGalwayIreland
  2. 2.Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering ScienceNUI GalwayGalwayIreland
  3. 3.Discipline of Pathology, School of Medicine, Lambe Institute for Translational ResearchNUI GalwayGalwayIreland
  4. 4.Nucleic Acid Diagnostics Research Laboratory, Microbiology, School of Natural SciencesNUI GalwayGalwayIreland
  5. 5.Discipline of Surgery, School of Medicine, Lambe Institute for Translational ResearchNUI GalwayGalwayIreland

Personalised recommendations