Skip to main content
Log in

Covalent organic frameworks as a novel fiber coating for solid-phase microextraction of volatile benzene homologues

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have attracted great research interest due to their fascinating structures and potential applications in various fields. Here, the COF-SCU1 (SCU for Sichuan University) coated solid-phase microextraction (SPME) fibers were fabricated by coating it on prior functionalized stainless steel wires via a simple physical coating method, and applied to extract some volatile benzene homologues from indoor air samples. The main experimental parameters affecting the extraction efficiency were optimized, including extraction temperature, extraction time, and desorption time. The developed method, which combined the COF-SCU1 coated fiber-based SPME with gas chromatography-mass spectrometric detection, gave large enrichment factors (276–887), low limits of detection (0.03–0.15 ng L−1), and good linearity (0.10–20 ng L−1) for the determination of gaseous benzene homologues from three different indoor air samples. The precision (expressed as the relative standard deviations, RSDs) for six replicate determinations of the analytes at 10 ng L−1 each of the analytes using the same COF-SCU1 coated fiber ranged from 5.8 to 8.9%. The fiber-to-fiber reproducibility for three parallel COF-SCU1 coated fibers varied from 6.9 to 10.7%. The recoveries of the analytes for the method for the spiked indoor air samples with the benzene homologues at the two concentrations of 1 and 10 ng L−1 were in the range of 88.6–101.5% and 87.9–103.4% with the RSDs ranging from 3.9 to 10.3% and 3.4 to 8.5%, respectively.

The covalent organic frameworks were applied as a novel fiber coating material for the solid-phase microextraction of volatile benzene homologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Makal TA, Li JR, Lu W, Zhou HC. Methane storage in advanced porous materials. Chem Soc Rev. 2012;41:7761–79.

    Article  CAS  Google Scholar 

  2. Li JR, Sculley J, Zhou HC. Metal-organic frameworks for separations. Chem Rev. 2011;112:869–932.

    Article  Google Scholar 

  3. Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev. 2012;112:673–4.

    Article  CAS  Google Scholar 

  4. Côté AP, Benin AI, Ockwig NW, Michael OK, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310:1166–70.

    Article  Google Scholar 

  5. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev. 2012;41:6010–22.

    Article  CAS  Google Scholar 

  6. Emmler T, Heinrich K, Fritsch D, et al. Free volume investigation of polymers of intrinsic microporosity (PIMs): PIM-1 and PIM1 copolymers incorporating ethanoanthracene units. Macromolecules. 2010;43:6075–84.

    Article  CAS  Google Scholar 

  7. Germain J, Hradil J, Fréchet JMJ, Svec F. High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater. 2006;18:4430–5.

    Article  CAS  Google Scholar 

  8. Liu S, Chen D, Zheng J, et al. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles. Nanoscale. 2015;7:16943–51.

    Article  CAS  Google Scholar 

  9. Liu S, Hu Q, Zheng J, et al. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants. J Chromatogr A. 2016;1450:9–16.

    Article  CAS  Google Scholar 

  10. Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed. 2009;48:9457–60.

    Article  CAS  Google Scholar 

  11. Jiang JX, Su F, Trewin A, et al. Conjugated microporous poly (aryleneethynylene) networks. Angew Chem Int Ed. 2007;46:8574–8.

    Article  CAS  Google Scholar 

  12. Chandra S, Kandambeth S, Biswal BP, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc. 2013;135:17853–61.

    Article  CAS  Google Scholar 

  13. Uribe-Romo FJ, Hunt JR, Hiroyasu F, Cornelius KC, Michael OK, Yaghi OM. A crystalline imine-linked 3D porous covalent organic framework. J Am Chem Soc. 2009;131:4570–1.

    Article  CAS  Google Scholar 

  14. Yang CX, Liu C, Cao YM, Yan XP. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chem Commun. 2015;51:12254–7.

    Article  CAS  Google Scholar 

  15. Sang SH, Furukawa H, Yaghi OM, Iii WAG. Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc. 2008;130:11580–1.

    Article  Google Scholar 

  16. Hiroyasu F, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc. 2009;131:8875–83.

    Article  Google Scholar 

  17. Ding SY, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc. 2011;133:19816–22.

    Article  CAS  Google Scholar 

  18. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed. 2014;53:2878–82.

    Article  CAS  Google Scholar 

  19. Dogru M, Bein T. On the road towards electroactive covalent organic frameworks. Chem Commun. 2014;50:5531–46.

    Article  CAS  Google Scholar 

  20. Liu XH, Guan CZ, Wang D, Wan LJ. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv Mater. 2014;26:6912–20.

    Article  CAS  Google Scholar 

  21. Chen L, Furukawa K, Gao J, et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions. J Am Chem Soc. 2014;136:9806–9.

    Article  CAS  Google Scholar 

  22. Garberoglio G, Vallauri R. Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks. Microporous Mesoporous Mater. 2008;116:540–7.

    Article  CAS  Google Scholar 

  23. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145–8.

    Article  CAS  Google Scholar 

  24. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR. Automation and optimization of solid-phase microextraction. Anal Chem. 1992;64:1960–6.

    Article  CAS  Google Scholar 

  25. Ouyang G, Vuckovic D, Pawliszyn J. Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev. 2011;111:2784–814.

    Article  CAS  Google Scholar 

  26. Li YA, Yang F, Liu ZC, Liu QK, Dong YB. A porous Cd(II)-MOF-coated quartz fiber for solid-phase microextraction of BTEX. J Mater Chem A. 2014;2:13868–72.

    Article  CAS  Google Scholar 

  27. He CT, Tian JY, Liu SY, Ouyang G, Zhang JP, Chen XM. A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chem Sci. 2013;4:351–6.

    Article  CAS  Google Scholar 

  28. Wanigasekara E, Perera S, Crank JA, et al. Bonded ionic liquid polymeric material for solid-phase microextraction GC analysis. Anal Bioanal Chem. 2010;396:511–24.

    Article  CAS  Google Scholar 

  29. Yu H, Ho TD, Anderson JL. Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. TrAC Trends Anal Chem. 2013;45:219–32.

    Article  CAS  Google Scholar 

  30. Koster E, Crescenzi C, den Hoedt W, Ensing K, de Jong GJ. Fibers coated with molecularly imprinted polymers for solid-phase microextraction. Anal Chem. 2001;73:3140–5.

    Article  CAS  Google Scholar 

  31. Rastkari N, Ahmadkhaniha R, Samadi N, Shafiee A, Yunesian M. Single-walled carbon nanotubes as solid-phase microextraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater. Anal Chim Acta. 2010;662:90–6.

    Article  CAS  Google Scholar 

  32. Wang JX, Jiang DQ, Gu ZY, Yan XP. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A. 2006;1137:8–14.

    Article  CAS  Google Scholar 

  33. Sarafraz-Yazdi A, Amiri A, Rounaghi G, Hosseini HE. A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flame. J Chromatogr A. 2011;1218:5757–64.

    Article  CAS  Google Scholar 

  34. Chen J, Zou J, Zeng J, et al. Preparation and evaluation of graphene-coated solid-phase microextraction fiber. Anal Chim Acta. 2010;678:44–9.

    Article  CAS  Google Scholar 

  35. Zhang S, Du Z, Li G. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction. Anal Chem. 2011;83:7531–41.

    Article  CAS  Google Scholar 

  36. Feng J, Sun M, Li J, Liu X, Jiang S. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique. Anal Chim Acta. 2011;701:174–80.

    Article  CAS  Google Scholar 

  37. Alizadeh R, Kashkoei PK, Kazemipour M. Zinc oxide-copper oxide nanoplates composite as coating for solid phase microextraction combined with high performance liquid chromatography-UV detection for trace analysis of chlorophenols in water and tomato juice samples. Anal Bioanal Chem. 2016;408:3727–36.

    Article  CAS  Google Scholar 

  38. Chang N, Gu ZY, Wang HF, Yan XP. Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal Chem. 2011;83:7094–101.

    Article  CAS  Google Scholar 

  39. Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP. In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem. 2009;81:9771–7.

    Article  CAS  Google Scholar 

  40. Chen XF, Zang H, Wang X, et al. Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry. Analyst. 2012;137:5411–9.

    Article  CAS  Google Scholar 

  41. Yu LQ, Yan XP. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem Commun. 2013;49:2142–4.

    Article  CAS  Google Scholar 

  42. Xie L, Liu S, Han Z, et al. Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta. 2015;853:303–10.

    Article  CAS  Google Scholar 

  43. Wu YY, Yang CX, Yan XP. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A. 2014;1334:1–8.

    Article  CAS  Google Scholar 

  44. Shang HB, Yang CX, Yan XP. Metal-organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J Chromatogr A. 2014;1357:165–71.

    Article  CAS  Google Scholar 

  45. Liu S, Zhou Y, Zheng J, et al. Isoreticular bio-MOF 100-102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism. Analyst. 2015;140:4384–7.

    Article  CAS  Google Scholar 

  46. Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc. 2009;131:15834–42.

    Article  CAS  Google Scholar 

  47. Pan J, Jia S, Li G, Hu Y. Organic building block based microporous network SNW-1 coating fabricated by multilayer interbridging strategy for efficient enrichment of trace volatiles. Anal Chem. 2015;87:3373–81.

    Article  CAS  Google Scholar 

  48. Li J, Yang X, Bai C, et al. A novel benzimidazole-functionalized 2D COF material: synthesis and application as a selective solid-phase extractant for separation of uranium. J Colloid Interface Sci. 2015;437:211–8.

    Article  CAS  Google Scholar 

  49. Bai C, Li J, Liu S, et al. In situ preparation of nitrogen-rich and functional ultramicroporous carbonaceous COFs by “segregated” microwave irradiation. Microporous Mesoporous Mater. 2014;197:148–55.

    Article  CAS  Google Scholar 

  50. Suresh VM, Bonakala S, Atreya HS, Balasubramanian S, Maji TK. Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl Mater Interfaces. 2014;6:4630–7.

    Article  CAS  Google Scholar 

  51. Vincent R, Fail CA, Schofield WCE, Teare DOH, Badyal JPS. Diels-Alder chemistry on alkene functionalized films. Langmuir. 2005;21:1412–5.

    Article  Google Scholar 

  52. Zhao H, Jin Z, Su H, Jing X, Sun F, Zhu G. Targeted synthesis of a 2D ordered porous organic framework for drug release. Chem Commun. 2011;47:6389–91.

    Article  CAS  Google Scholar 

  53. Bianchin JN, Nardini G, Merib J, Dias AN, Martendal E, Carasek E. Simultaneous determination of polycyclic aromatic hydrocarbons and benzene, toluene, ethylbenzene and xylene in water samples using a new sampling strategy combining different extraction modes and temperatures in a single extraction solid-phase microextraction-gas chromatography-mass spectrometry procedure. J Chromatogr A. 2012;1233:22–9.

    Article  CAS  Google Scholar 

  54. Gholivand MB, Shamsipur M, Shamizadeh M, Moradian R, Astinchap B. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions. Anal Chim Acta. 2014;822:30–6.

    Article  CAS  Google Scholar 

  55. Zhu F, Liang Y, Xia L, et al. Preparation and characterization of vinyl-functionalized mesoporous organosilica-coated solid-phase microextraction fiber. J Chromatogr A. 2012;1247:42–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (31471643, 31571925) and the Hebei “Double First Class Discipline” Construction Foundation for the Discipline of Food Science and Engineering of Hebei Agricultural University (2016SPGCA18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yang, Q., Li, Z. et al. Covalent organic frameworks as a novel fiber coating for solid-phase microextraction of volatile benzene homologues. Anal Bioanal Chem 409, 3429–3439 (2017). https://doi.org/10.1007/s00216-017-0286-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0286-x

Keywords

Navigation