Skip to main content
Log in

Exploring the potential of high resolution mass spectrometry for the investigation of lignin-derived phenol substitutes in phenolic resin syntheses

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chemical degradation is an efficient method to obtain bio-oils and other compounds from lignin. Lignin bio-oils are potential substitutes for the phenol component of phenol formaldehyde (PF) resins. Here, we developed an analytical method based on high resolution mass spectrometry that provided structural information for the synthesized lignin-derived resins and supported the prediction of their properties. Different model resins based on typical lignin degradation products were analyzed by electrospray ionization in negative ionization mode. Utilizing enhanced mass defect filter techniques provided detailed structural information of the lignin-based model resins and readily complemented the analytical data from differential scanning calorimetry and thermogravimetric analysis. Relative reactivity and chemical diversity of the phenol substitutes were significant determinants of the outcome of the PF resin synthesis and thus controlled the areas of application of the resulting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Megson NJL. Aldehyde phenolic condensations from a chemical standpoint. Trans Faraday Soc. 1935;336–345.

  2. Knop A, Pilato LA. Phenolic resins: chemistry, applications and performance. Berlin Heidelberg: Springer-Verlag; 2013.

  3. Hultzsch K. Chemie der Phenolharze. Berlin Heidelberg: Springer-Verlag; 1950.

  4. Gardziella A, Pilato L, Knop A. Phenolic resins : chemistry, applications, standardization, safety, and ecology. Berlin Heidelberg: Springer-Verlag; 2013.

  5. Pilato LA. Phenolic resins: a century of progress. Berlin Heidelberg: Springer-Verlag; 2010.

  6. BP. Statistical review of world energy. 2016;1–48.

  7. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843.

    Article  Google Scholar 

  8. Pradhan SK, Chakraborty I, Kar BB. Chemically modified lignin—a potential resource material for composites with better stability. Int J Sci Environ Technol. 2015;4:183–9.

    Google Scholar 

  9. Wang H, Tucker M, Ji Y. Recent development in chemical depolymerization of lignin: a review. J Appl Chem. 2013;2013:1–9.

    Article  Google Scholar 

  10. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34:29–41.

    Article  CAS  Google Scholar 

  11. de Wild PJ, Huijgen WJJ, Gosselink RJA. Perspective: lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioprod Biorefining. 2012;6:246–56.

    Article  Google Scholar 

  12. Mudraboyina BP, Fu D, Jessop PG. Supercritical fluid rectification of lignin microwave-pyrolysis oil. Green Chem. 2015;17:169–72.

    Article  CAS  Google Scholar 

  13. Jegers HE, Klein MT. Primary and secondary lignin pyrolysis reaction pathways. Ind Eng Chem Process Des Dev. 1985;24:173–83.

    Article  CAS  Google Scholar 

  14. Forchheim D, Hornung U, Kempe P, Kruse A, Steinbach D. Influence of RANEY nickel on the formation of intermediates in the degradation of lignin. Int J Chem Eng. 2012;2012:589749.

    Article  Google Scholar 

  15. Stewart D. Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod. 2008;27:202–7.

    Article  CAS  Google Scholar 

  16. Kleinert M, Barth T. Phenols from lignin. Chem Eng Technol. 2008;31:736–45.

    Article  CAS  Google Scholar 

  17. Pineda A, Lee AF. Heterogeneously catalyzed lignin depolymerization. Appl Petrochem Res. 2016;6:1–14.

    Article  Google Scholar 

  18. Deepa AK, Dhepe PL. Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal. 2015;5:365–79.

    Article  CAS  Google Scholar 

  19. Sprung MM. Reactivity of phenols toward paraformaldehyde. J Am Chem Soc. 1941;63:334–43.

    Article  CAS  Google Scholar 

  20. Mitsunaga T, Conner AH, Hill CG. Reaction of formaldehyde with phenols: a computational study. Wood Adhes. 2000;147–154.

  21. Cheng S, Yuan Z, Leitch M, Anderson M, Xu CC. Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio. Ind Crops Prod. 2013;44:315–22.

    Article  CAS  Google Scholar 

  22. Feng S, Yuan Z, Leitch M, Shui H, Xu CC. Effects of bark extraction before liquefaction and liquid oil fractionation after liquefaction on bark-based phenol formaldehyde resoles. Ind Crops Prod. 2016;84:330–6.

    Article  CAS  Google Scholar 

  23. Moubarik A, Grimi N, Boussetta N, Pizzi A. Isolation and characterization of lignin from Moroccan sugar cane bagasse: production of lignin-phenol-formaldehyde wood adhesive. Ind Crops Prod. 2013;45:296–302.

    Article  CAS  Google Scholar 

  24. Turunen M, Alvila L, Pakkanen TT, Rainio J. Modification of phenol-formaldehyde resol resins by lignin, starch, and urea. J Appl Polym Sci. 2003;88:582–8.

    Article  CAS  Google Scholar 

  25. Wang M, Leitch M, Xu C. Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur Polym J. 2009;45:3380–8.

    Article  CAS  Google Scholar 

  26. Yuan FY, Zhang HB, Li X, Ma HL, Li XZ, Yu ZZ. In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon. 2014;68:653–61.

    Article  CAS  Google Scholar 

  27. Liu C, Li K, Li H, Zhang S, Zhang Y. The effect of zirconium incorporation on the thermal stability and carbonized product of phenol-formaldehyde resin. Polym Degrad Stab. 2014;102:180–5.

    Article  CAS  Google Scholar 

  28. Yang S, Zhang Y, Yuan T-Q, Sun R-C. Lignin-phenol-formaldehyde resin adhesives prepared with biorefinery technical lignins. J Appl Polym Sci. 2015;132:42493.

    Google Scholar 

  29. Tachon N, Benjelloun-Mlayah B, Delmas M. Organosolv wheat straw lignin as a phenol substitute for green phenolic resins. BioResources. 2016;11:5797–815.

    Article  CAS  Google Scholar 

  30. Hoong YB, Pizzi A, Chuah LA, Harun J. Phenol-urea-formaldehyde resin co-polymer synthesis and its influence on elaeis palm trunk plywood mechanical performance evaluated by 13C NMR and MALDI-TOF mass spectrometry. Int J Adhes Adhes. 2015;63:117–23.

    Article  CAS  Google Scholar 

  31. Wang J, Jiang H, Jiang N. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochim Acta. 2009;496:136–42.

    Article  CAS  Google Scholar 

  32. Sobera M, Hetper J. Pyrolysis-gas chromatography-mass spectrometry of cured phenolic resins. J Chromatogr A. 2003;993:131–5.

    Article  CAS  Google Scholar 

  33. Strzemiecka B, Voelkel A, Zieba-Palus J, Lachowicz T. Assessment of the chemical changes during storage of phenol-formaldehyde resins pyrolysis gas chromatography mass spectrometry, inverse gas chromatography and Fourier transform infra red methods. J Chromatogr A. 2014;1359:255–61.

    Article  CAS  Google Scholar 

  34. Santos RM B, Martinho Simões JA. Energetics of the O-H bond in phenol and substituted phenols: a critical evaluation of literature data. J Phys Chem Ref Data. 1998;27:707–39.

    Article  Google Scholar 

  35. Dier TKF, Egele K, Fossog V, Hempelmann R, Volmer DA. Enhanced mass defect filtering to simplify and classify complex mixtures of lignin degradation products. Anal Chem. 2016;88:1328–35.

    Article  CAS  Google Scholar 

  36. Qi Y, Hempelmann R, Volmer DA. Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products. Anal Bioanal Chem. 2016;408:4835–43.

    Article  CAS  Google Scholar 

  37. Qi Y, Hempelmann R, Volmer DA. Shedding light on the structures of lignin compounds: photo-oxidation under artificial UV light and characterization by high resolution mass spectrometry. Anal Bioanal Chem. 2016;408:8203–10.

    Article  CAS  Google Scholar 

  38. Kendrick E. A mass scale based on CH, = 14. 0000 for high resolution mass spectrometry of organic compounds. Anal Biochem. 1963;35:2146–54.

    CAS  Google Scholar 

  39. Determination of free-formaldehyde content by hydroxylamine hydrochloride method (ISO 9397:1995). 1997. https://www.beuth.de/de/norm/din-en-iso-9397/2973638.

  40. Hathway DE, Seakins JWT. Autoxidation of catechin. Nature. 1955;176:218.

    Article  Google Scholar 

  41. Pekala RW. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci. 1989;24:3221–7.

    Article  CAS  Google Scholar 

  42. Li P, Coleman DW, Spaulding KM, McClennen WH, Stafford PR, Fife DJ. Fractionation and characterization of phenolic resins by high-performance liquid chromatography and gel-permeation chromatography combined with ultraviolet, refractive index, mass spectrometry and light-scattering detection. J Chromatogr A. 2001;914:147–59.

    Article  CAS  Google Scholar 

  43. Christiansen AW, Gollob L. Differential scanning calorimetry of phenol-formaldehyde resols. J Appl Polym Sci. 1985;30:2279–89.

    Article  CAS  Google Scholar 

  44. Khan MA, Ashraf SM, Malhotra VP. Eucalyptus bark lignin substituted phenol formaldehyde adhesives: a study on optimization of reaction parameters and characterization. J Appl Polym Sci. 2004;92:3514–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Alfried Krupp von Bohlen und Halbach-Stiftung, the German Research Foundation (DFG VO 1355/4-1 and FTICR-MS Facility, DFG INST 256/356-1) and “Niedersächsisches Ministerium für Wissenschaft und Kultur” for financial support. The authors thank Allnex S.à.r.l. (Luxembourg) for the GPC experiments.

Author contributions

The manuscript was written through contributions of all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich A. Volmer.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial or non-financial interests.

Additional information

Tobias K. F. Dier and Marco Fleckenstein contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 0.99 mb)

ESM 2

(XLSX 51.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dier, T.K.F., Fleckenstein, M., Militz, H. et al. Exploring the potential of high resolution mass spectrometry for the investigation of lignin-derived phenol substitutes in phenolic resin syntheses. Anal Bioanal Chem 409, 3441–3451 (2017). https://doi.org/10.1007/s00216-017-0282-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0282-1

Keywords

Navigation