Skip to main content
Log in

Analytical strategy for determination of known and unknown destruxins using hybrid quadrupole-Orbitrap high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An analytical strategy based on a hybrid quadrupole-Orbitrap mass spectrometry was proposed for the simultaneous screening of known destruxins and characterization of potential members of this class of secondary metabolites, in order to evaluate the metabolite production of entomopathogenic fungi used as biocontrol agents. Initially, the fragmentation pathway of the known and commercially available destruxin A was established combining high resolution mass spectrometry (HRMS) and multiple stage MS data in order to obtain the strategy for the characterization of other destruxins for which reference standards were not available. Nineteen known destruxins including A, B, C, D, Ed, F, A1, B1, Ed1, A2, B2, D2, A3, DesmA, DesmB, DesmC, DesmB2, and two chloro-derivatives (Cl and E2 chlorohydrin) were unequivocally identified in Metarhizium brunneum using the proposed strategy. In addition, four unknown destruxins, namely C1, Ed2, G, and G1, were structurally elucidated and characterized for the first time in this fungal strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kodaira Y. Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor. Agric Biol Chem. 1961;25:261–2.

    Article  CAS  Google Scholar 

  2. Suzuki A, Kawakami K, Tamura S. Isolation and structure elucidation of three new insecticidal cyclodepsipeptides, destruxins C and D and desmethyldestruxin B, produced by Metarhizium anisopliae. Agric Biol Chem. 1970;35:1641–3.

    Google Scholar 

  3. Ríos-Moreno A, Carpio A, Garrido-Jurado I, Arroyo-Manzanares N, Lozano-Tovar MD, Arce L, et al. Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS. Biocontrol Sci Tech. 2016;26:1298–311.

    Article  Google Scholar 

  4. Krasnoff SB, Gibson DM, Belofsky GN, Gloer KB, Gloer JB. New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod. 1996;59:485–9.

    Article  CAS  Google Scholar 

  5. Parada RY, Oka K, Yamagishi D, Kodama M, Otani H. Destruxin B produced by Alternaria brassicae does not induce accessibility of host plants to fungal invasion. Physiol Mol Plant Pathol. 2007;71:48–54.

    Article  CAS  Google Scholar 

  6. Tsunoo A, Kamijo M, Taketomo N, Sato Y, Ajisaka K. Roseocardin, a novel cardiotonic cyclodepsipeptide from Trichothecium roseum TT103. J Antibiot (Tokyo). 1997;50:1007–13.

    Article  CAS  Google Scholar 

  7. Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS, LaBarbera DV, Sette LD, et al. New destruxins from the marine-derived fungus Beauveria feline. J Antibiot. 2006;59:553–63.

    Article  CAS  Google Scholar 

  8. Che Y, Swenson DC, Gloer JB, Koster B, Malloch D. Pseudodestruxins A and B: new cyclic depsipeptides from the Coprophilous fungus Nigrosabulum globosum. J Nat Prod. 2001;64:555–8.

    Article  CAS  Google Scholar 

  9. Kawazu K, Murakami T, Ono Y, Kanzaki H, Kobayashi A, Mikawa T, et al. Isolation and characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084. Biosci Biotechnol Biochem. 1993;57:98–101.

    Article  CAS  Google Scholar 

  10. Soledade M, Pedras C, Zaharia LE, Ward DE. The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry. 2002;59:579–96.

    Article  Google Scholar 

  11. Sowjanya Sree K, Padmaja V, Murthy LNY. Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stage. Pest Manag Sci. 2008;64:119–25.

    Article  CAS  Google Scholar 

  12. Liu B-L, Tzeng Y-M. Development and applications of destruxins: a review. Biotechnol Adv. 2012;30:1242–54.

    Article  CAS  Google Scholar 

  13. Dumas C, Robert P, Pais M, Vey A, Quiot JM. Insecticidal and cytotoxic effects of natural and hemisynthetic destruxins. Comp Biochem Physiol Pharmacol Toxicol Endocrinol. 1994;108:195–203.

    Article  CAS  Google Scholar 

  14. Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invertebr Pathol. 1999;74:213–23.

    Article  CAS  Google Scholar 

  15. Strasser H, Hutwimmer S, Burgstaller W. Metabolite toxicology of fungal biocontrol agents. In: Ehlers R, editor. Regulation of biological control agents. Netherlands: Springer; 2011. p. 191–213.

    Chapter  Google Scholar 

  16. Lei Z, Huhman DV, Sumner LW. Mass spectrometry strategies in metabolomics. J Biol Chem. 2011;29:25435–42.

    Article  Google Scholar 

  17. Arroyo-Manzanares N, Diana Di Mavungu J, Uka V, Malysheva SV, Cary JW, Ehrlich KC, et al. Use of UHPLC high-resolution orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus. Food Addit Contam Part A. 2015;32:1656–73.

    Article  CAS  Google Scholar 

  18. Picó Y, Barceló D. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon. Anal Bioanal Chem. 2015;407:6257–73.

    Article  Google Scholar 

  19. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.

    Article  CAS  Google Scholar 

  20. Kaufmann A. The current role of high-resolution mass spectrometry in food analysis. Anal Bioanal Chem. 2012;403:1233–49.

    Article  CAS  Google Scholar 

  21. Carpio A, Arroyo-Manzanares N, Ríos-Moreno A, Garrido-Jurado I, Gámiz-Gracia L, García-Campaña AM, et al. Development of a QuEChERS-based extraction method for the determination of destruxins in potato plants by UHPLC–MS/MS. Talanta. 2016;146:815–22.

    Article  CAS  Google Scholar 

  22. Jegorov A, Havlícek V, Sedmera P. Rapid screening of destruxins by liquid chromatography/mass spectrometry. J Mass Spectrom. 1998;33:274–80.

    Article  CAS  Google Scholar 

  23. Dudley E, Wang C, Skrobek A, Newton RP, Butt TM. Mass spectrometric studies on the intrinsic stability of destruxin E from Metarhizium anisopliae. Rapid Commun Mass Spectrom. 2004;18:2577–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Natalia Arroyo-Manzanares received a post-doctoral grant from the University of Granada. This research has been partially supported by the European Community’s Seventh Framework Program Grant (FP7-ENV.2011.3.1.9-1 ECO-INNOVATION, INBIOSOIL, Grant Agreement no. 282767).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalia Arroyo-Manzanares or José Diana Di Mavungu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo-Manzanares, N., Diana Di Mavungu, J., Garrido-Jurado, I. et al. Analytical strategy for determination of known and unknown destruxins using hybrid quadrupole-Orbitrap high-resolution mass spectrometry. Anal Bioanal Chem 409, 3347–3357 (2017). https://doi.org/10.1007/s00216-017-0276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0276-z

Keywords

Navigation