Skip to main content
Log in

A simple method for forward variable selection and calibration: evaluation for compact and low-cost laser-induced breakdown spectroscopy system

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work presents a new method for forward variable selection and calibration and its evaluation for manganese determination in steel by laser-induced breakdown spectroscopy (LIBS). A compact and low-cost LIBS instrument was used, based on a microchip laser and a grating mini-spectrometer containing a non-intensified, non-gated, and non-cooled linear sensor array. Sixty steel samples were analyzed, with known manganese concentrations from 0.106 to 1.696 wt%. The spectra (1757 variables between 200 and 850 nm) were acquired under the continuous application of laser pulses at 100 Hz and using 80, 400, and 1000 ms integration times. The new method generated a mathematic combination of the selected variables and the results were calibrated against the manganese content by linear or quadratic regression. The best results were obtained using the spectra from all integration times together, with 31 selected variables and root mean square errors of cross-validation and prediction of 0.015 and 0.033, respectively. Compared to Jack-knife partial least squares regression, the new method presented lower prediction errors and numbers of selected variables, with the advantages of no data pretreatment and a simpler mathematic calculation.

New method for forward variable selection and calibration applied to manganese determination in steel by laser induced breakdown spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vandeginste BGM, Massart DL, Buydens LMC, Jong S, Lewi PJ, Smeyers-Verbeke J. Handbook of chemometrics and qualimetrics: part B. 1st ed. Amsterdam: Elsevier; 1998.

    Google Scholar 

  2. Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 6th ed. London: Pearson; 2010.

    Google Scholar 

  3. Andersen CM, Bro R. Variable selection in regression—a tutorial. J Chemometrics. 2010;24:728–10.

    Article  CAS  Google Scholar 

  4. Gromski PS, Xu Y, Correa E, Ellis DI, Turner ML, Goodacre R. A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Anal Chim Acta. 2014;829:1–8.

    Article  CAS  Google Scholar 

  5. Broadhurst D, Goodacre R, Jones A, Rowland JJ, Kell DB. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal Chim Acta. 1997;348:71–16.

    Article  CAS  Google Scholar 

  6. Xu L, Zhang WJ. Comparison of different methods for variable selection. Anal Chim Acta. 2001;446:477–7.

    Article  CAS  Google Scholar 

  7. Pasquini C, Cortez J, Silva LMC, Gonzaga FB. Laser induced breakdown spectroscopy. J Braz Chem Soc. 2007;18:463–50.

    Article  CAS  Google Scholar 

  8. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc. 2012;66:347–73.

    Article  CAS  Google Scholar 

  9. Galbács G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal Bioanal Chem. 2015;407:7537–26.

    Article  Google Scholar 

  10. Musazzi S, Perini U. Laser induced breakdown spectroscopy: theory and applications. 1st ed. Berlin: Springer; 2014.

    Book  Google Scholar 

  11. Stratis DN, Eland KL, Carter JC, Tomlinson SJ, Angel SM. Comparison of acousto-optic and liquid crystal tunable filters for laser-induced breakdown spectroscopy. Appl Spectrosc. 2001;55:999–6.

    Article  CAS  Google Scholar 

  12. Gonzaga FB, Pasquini C. A new detection system for laser induced breakdown spectroscopy based on an acousto-optical tunable filter coupled to a photomultiplier: application for manganese determination in steel. Spectrochim Acta B. 2008;63:1268–6.

    Article  Google Scholar 

  13. Neuhauser RE, Ferstl B, Haisch C, Panne U, Niessner R. Design of a low-cost detection system for laser-induced plasma spectroscopy. Rev Sci Instrum. 1999;70:3519–4.

    Article  CAS  Google Scholar 

  14. Huang JS, Ke CB, Huang LS, Lin KC. The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets. Spectrochim Acta B. 2002;57:35–14.

    Article  Google Scholar 

  15. Penzkofer A. Solid-state lasers. Prog Quant Electron. 1998;12:291–137.

    Article  Google Scholar 

  16. Byer RL. Nonlinear optics and solid-state lasers: 2000. IEEE J Sel Top Quantum Electron. 2000;6:911–20.

    Article  CAS  Google Scholar 

  17. Bauer HE, Leis F, Niemax K. Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection. Spectrochim Acta B. 1998;53:1815–11.

    Article  Google Scholar 

  18. Sabsabi M, Detalle V, Harith MA, Tawfik W, Imam H. Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy. Appl Optics. 2003;42:6094–5.

    Article  Google Scholar 

  19. Zayhowski JJ. Microchip lasers. Opt Mater. 1999;11:385–5.

    Article  Google Scholar 

  20. Gornushkin IB, Amponsah-Manager K, Smith BW, Omenetto N, Winefordner JD. Microchip laser-induced breakdown spectroscopy: a preliminary feasibility investigation. Appl Spectrosc. 2004;58:762–8.

    Article  CAS  Google Scholar 

  21. Gonzaga FB, Pasquini C. A complementary metal oxide semiconductor sensor array based detection system for laser induced breakdown spectroscopy: evaluation of calibration strategies and application for manganese determination in steel. Spectrochim Acta B. 2008;63:56–8.

    Article  Google Scholar 

  22. Gonzaga FB, Pasquini C. A compact and low cost laser induced breakdown spectroscopic system: application for simultaneous determination of chromium and nickel in steel using multivariate calibration. Spectrochim Acta B. 2012;65:20–5.

    Article  Google Scholar 

  23. Effenberger AJ, Scott JR. Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy. Anal Bioanal Chem. 2011;400:3217–11.

    Article  CAS  Google Scholar 

  24. Dzyubenko MI, Kolpakov SN, Kulishenko DF, Priyomko AA. Rapid analysis of emission spectra for gold alloys. J Appl Spectrosc. 2010;77:279–6.

    Article  CAS  Google Scholar 

  25. De Giacomo A, Dell’Aglio M, Casavola A, Colonna G, De Pascale O, Capitelli M. Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy. Anal Bioanal Chem. 2006;385:303–9.

    Article  CAS  Google Scholar 

  26. Zheng P, Liu H, Wang J, Yu B, Zhang B, Yang R, et al. Optimization of experimental conditions by orthogonal test design in a laser-induced breakdown experiment to analyze aluminum alloys. Anal Methods. 2014;6:2163–7.

    Article  CAS  Google Scholar 

  27. Ismail MA, Cristoforetti G, Legnaioli S, Pardini L, Palleschi V, Salvetti A, et al. Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations. Anal Bioanal Chem. 2006;385:316–10.

    Article  CAS  Google Scholar 

  28. Gonzaga FB, Rocha WFC, Correa DN. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics. Spectrochim Acta B. 2015;109:24–7.

    Article  CAS  Google Scholar 

  29. Lopez-Moreno C, Amponsah-Manager K, Smith BW, Gornushkin IB, Omenetto N, Palanco S, et al. Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy. J Anal At Spectrom. 2005;20:552–5.

    Article  CAS  Google Scholar 

  30. Martens H, Martens M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer. 2000;11:5–12.

    Article  Google Scholar 

  31. Karaman I, Qannari EM, Martens H, Hedemann MS, Knudsen KEB, Kohler A. Comparison of Sparse and Jack-knife partial least squares regression methods for variable selection. Chemometr Intell Lab. 2013;122:65–13.

    Article  CAS  Google Scholar 

  32. Sansonetti JE, Martin WC. Handbook of basic atomic spectroscopic data. J Phys Chem Ref Data. 2005;34:1559–701.

    Article  CAS  Google Scholar 

  33. Zaytsev SM, Popov AM, Chernykh EV, Voronina RD, Zorov NB, Labutin TA. Comparison of single- and multivariate calibration for determination of Si, Mn, Cr and Ni in highalloyed stainless steels by laser-induced breakdown spectrometry. J Anal At Spectrom. 2014;29:1417–8.

    Article  CAS  Google Scholar 

  34. Zeng Q, Guo L, Li X, Shen M, Zhu Y, Li J, et al. Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser. J Anal At Spectrom. 2016;31:767–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council of Technological and Scientific Development (CNPq) [grant numbers 573894/2008-6 and 307771/2015-6], the São Paulo Research Foundation (FAPESP) [grant number 2008/57808-1], and the Research Support Foundation of Rio de Janeiro State (FAPERJ) [grant number E-26/190.233/2012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Barbieri Gonzaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzaga, F.B., Braga, L.R., Sampaio, A.P. et al. A simple method for forward variable selection and calibration: evaluation for compact and low-cost laser-induced breakdown spectroscopy system. Anal Bioanal Chem 409, 3017–3024 (2017). https://doi.org/10.1007/s00216-017-0247-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0247-4

Keywords

Navigation