Skip to main content
Log in

An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optimized workflow for multiplexed and spatially localized on-tissue quantitative protein analysis is here presented. The method is based on the use of an enzyme delivery platform, a polymeric hydrogel disc, allowing for a localized digestion directly onto the tissue surface coupled with an isobaric mass tag strategy for peptide labeling and relative quantification. The digestion occurs within such hydrogels, followed by peptide solvent extraction and identification by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Since this is a histology-directed on-tissue analysis, multiple hydrogels were placed onto morphologically and spatially different regions of interest (ROIs) within the tissue surface, e.g., cardiac myxoma tumor vascularized region and the adjacent hypocellular area. After a microwave digestion step (2 min), enzymatically cleaved peptides were labeled using TMT reagents with isobaric mass tags, enabling analysis of multiple samples per experiment. Thus, N = 8 hydrogel-digested samples from cardiac myxoma serial tissue sections (N = 4 from the vascularized ROIs and N = 4 from the adjacent hypocellular areas) were processed and then combined before a single LC-MS/MS analysis. Regulated proteins from both cardiac myxoma regions were assayed in a single experiment.

The workflow for histology-guided on-tissue localized protein digestion followed by isobaric mass tagging and LC-MS/MS analysis for proteins quantification is here summarized

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellizzi AM. Contributions of molecular analysis to the diagnosis and treatment of gastrointestinal neoplasms. Semin Diagn Pathol. 2013;30(4):329–61.

    Article  Google Scholar 

  2. Korte EA, Gaff PM, Powell DW. Contributions of mass spectrometry-based proteomics to defining cellular mechanisms and diagnostic markers for systemic lupus erythematosus. Arthritis Res Ther. 2012;14(204):1–11.

    Google Scholar 

  3. Koomen JM, Haura EB, Bepler G, Sutphen R, Remily-Wood ER, Benson K, et al. Proteomic contributions to personalized cancer care. Mol Cell Proteomics. 2008;7(10):1780–94.

    Article  CAS  Google Scholar 

  4. López-Ferrer D, Cañas B, Vázquez J, Lodeiro C, Rial-Otero R, Moura I, et al. Sample treatment for protein identification by mass spectrometry-based techniques. TrAC Trends Anal Chem. 2006;25(10):996–1005.

    Article  Google Scholar 

  5. Capelo JL, Carreira R, Diniz M, Fernandes L, Galesio M, Lodeiro C, et al. Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta. 2009;650(2):151–9.

    Article  CAS  Google Scholar 

  6. Taverna D, Nanney LB, Pollins AC, Sindona G, Caprioli R. Spatial mapping by imaging mass spectrometry offers advancements for rapid definition of human skin proteomic signatures. Exp Dermatol. 2011;20(8):642–7.

    Article  CAS  Google Scholar 

  7. Taverna D, Nanney LB, Pollins AC, Sindona G, Caprioli R. Multiplexed molecular descriptors of pressure ulcers defined by imaging mass spectrometry. Wound Repair Regen. 2011;19(6):734–44.

    Article  Google Scholar 

  8. Donato G, Conforti F, Zuccalà V, Russo E, Maltese L, Perrotta I, et al. Expression of tenascin-c and CD44 receptors in cardiac myxomas. Cardiovasc Pathol. 2009;18(3):173–7.

    Article  CAS  Google Scholar 

  9. Langenkamp E, Kamps J, JAAM M, Verpoorte E, Niyaz Y, Horvatovich P, et al. Innovations in studying in vivo cell behavior and pharmacology in complex tissues—microvascular endothelial cells in the spotlight. Cell Tissue Res. 2013;354(3):647–69.

    Article  CAS  Google Scholar 

  10. Xu BJ, Caprioli RM, Sanders ME, Jensen RA. Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J Am Soc Mass Spectrom. 2002;13(11):1292–7.

    Article  CAS  Google Scholar 

  11. Craven R, Totty N, Harnden P, Selby PJ, Banks RE. Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am J Pathol American Society for Investigative Pathology. 2002;160(3):815–22.

    CAS  Google Scholar 

  12. Simone NL, Remaley AT, Charboneau L, Petricoin EF, Glickman JW, Emmert-Buck MR, et al. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Pathol Am Soc Invest Pathol. 2000;156(2):445–52.

    CAS  Google Scholar 

  13. Ornstein DK, Gillespie JW, Paweletz CP, Duray PH, Herring J, Vocke CD, et al. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis. 2000;21(11):2235–42.

  14. Mukherjee S, Rodriguez-Canales J, Hanson J, Emmert-Buck MR, Tangrea MA, Prieto DaRue A, et al. Proteomic analysis of frozen tissue samples using laser capture microdissection. In: Zhou M, Veenstra T, editors. Proteomics for biomarker discovery: methods and protocols, methods in molecular biology. New York: Springer Science Business Media; 2013. pp. 71–83.

  15. Krizman DB. Use of formalin-fixed, paraffin-embedded tissue for proteomic biomarker discovery. Methods Mol Biol. 2013;1002:85–92.

    Article  CAS  Google Scholar 

  16. Vanderburg CR, Clarke MSF. Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Mol Cell Biochem. 2013;375(1–2):159–70.

    CAS  Google Scholar 

  17. Zen Y, Britton D, Mitra V, Brand A, Jung S, Loessner C, et al. Protein expression profiles of chemo-resistant mixed phenotype liver tumors using laser microdissection and LC–MS/MS proteomics. EuPA Open Proteomics. 2013;1:38–47.

    Article  CAS  Google Scholar 

  18. Royal V, Quint P, Leblanc M, LeBlanc R, Duncanson GF, Perrizo RL, et al. IgD heavy-chain deposition disease: detection by laser microdissection and mass spectrometry. J Am Soc Nephrol. 2015;26(4):784–90.

    Article  CAS  Google Scholar 

  19. Xing J, Wang K, Liu P-W, Miao Q, Chen X-Y. Mina53, a novel molecular marker for the diagnosis and prognosis of gastric adenocarcinoma. Oncol Rep. 2014;31(2):634–40.

    CAS  Google Scholar 

  20. Nandy A, Gangopadhyay S, Mukhopadhyay A. Individualizing breast cancer treatment—the dawn of personalized medicine. Exp Cell Res Elsevier. 2014;320(1):1–11.

    Article  CAS  Google Scholar 

  21. Luk VN, Fiddes LK, Luk VM, Kumacheva E, Wheeler AR. Digital microfluidic hydrogel microreactors for proteomics. Proteomics. 2012;12(9):1310–8.

    Article  CAS  Google Scholar 

  22. Harris GA, Nicklay JJ, Caprioli RM. Localized in situ hydrogel-mediated protein digestion and extraction technique for on-tissue analysis. Anal Chem. 2013;85(5):2717–23.

    Article  CAS  Google Scholar 

  23. Nicklay JJ, Harris GA, Schey KL, Caprioli RM. MALDI imaging and in situ identification of integral membrane proteins from rat brain tissue sections. Anal Chem. 2013;85(15):7191–6.

    Article  CAS  Google Scholar 

  24. Taverna D, Pollins AC, Nanney LB, Sindona G, Caprioli RM. Histology-guided protein digestion/extraction from formalin-fixed and paraffin-embedded pressure ulcer biopsies. Exp Dermatol. 2015;18:1–4.

    Google Scholar 

  25. Taverna D, Norris JL, Caprioli RM. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem. 2015;87(1):670–6.

    Article  CAS  Google Scholar 

  26. Taverna D, Boraldi F, De Santis G, Caprioli RM, Quaglino D. Histology-directed and imaging mass spectrometry: an emerging technology in ectopic calcification. Bone. 2015;74:83–94.

    Article  CAS  Google Scholar 

  27. Ong S-E, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 2005;1(5):252–62.

    Article  CAS  Google Scholar 

  28. Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal. 2015;113:2–20.

    Article  CAS  Google Scholar 

  29. Nakamura T, Oda Y. Mass spectrometry-based quantitative proteomics. Biotechnol Genet Eng Rev. 2007;24(1):147–64.

    Article  CAS  Google Scholar 

  30. Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods. 2013;61(3):186–218.

    Article  CAS  Google Scholar 

  31. McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem. 2012;84(17):7469–78.

    Article  CAS  Google Scholar 

  32. Di Vito A, Mignogna C, Donato G. The mysterious pathways of cardiac myxomas: a review of histogenesis, pathogenesis and pathology. Histopathology. 2015;66(3):321–32.

    Article  Google Scholar 

  33. Donato G, Conforti F, Camastra C, Ammendola M, Donato A, Renzulli A. The role of mast cell tryptases in cardiac myxoma: histogenesis and development of a challenging tumor. Oncol Lett. 2014;10:379–83.

    Google Scholar 

  34. Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2(8):1896–906.

    Article  CAS  Google Scholar 

  35. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods. 2007;4(11):923–5.

    Article  Google Scholar 

  36. Benjamini Y, Benjamini HY, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300.

    Google Scholar 

  37. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom. 2008;19(8):1069–77.

    Article  CAS  Google Scholar 

  38. Lemaire D, Marie G, Serani L, Larprevote O. Stabilization of gas-phase noncovalent macromolecular complexes in electrospray mass spectrometry using aqueous triethylammonium bicarbonate buffer. Anal Chem. 2001;73(8):1699–706.

    Article  CAS  Google Scholar 

  39. Sandberg A, Branca RMM, Lehtiö J, Forshed J. Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference. J Proteomics. 2014;96:133–44.

    Article  CAS  Google Scholar 

  40. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res. 2003;2(i):43–50.

    Article  CAS  Google Scholar 

  41. Gaspari M, Verhoeckx KCM, Verheij ER, Greef J Van Der. Integration of Two-Dimensional LC-MS with Proteomic Samples. 2006;78(7):2286–96

  42. Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteomics. 2017;153:8–20.

    Article  CAS  Google Scholar 

  43. Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB. Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers. J Proteome Res. 2015;14:986–96.

    Article  CAS  Google Scholar 

  44. Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB. Imaging mass spectrometry for accessing molecular changes during burn wound healing. Wound Repair Regen. 2016;13(4):385–92.

    Google Scholar 

Download references

Acknowledgements

Funds from MIUR, Programma Operativo Nazionale, iCARE project, grant no. ICARE PON03PE_0009_2 and Prof. A. Procopio, Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy, for the technical support on the microwave reaction are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Taverna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Written informed consent was obtained from the patient for research use.

The study was approved by the Internal Ethic Committee of Sant’Anna Hospital, Catanzaro, Italy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 392 kb)

ESM 2

(XLSX 2152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taverna, D., Mignogna, C., Gabriele, C. et al. An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma. Anal Bioanal Chem 409, 2919–2930 (2017). https://doi.org/10.1007/s00216-017-0237-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0237-6

Keywords

Navigation