Skip to main content
Log in

Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC–MS/MS for the determination of glucocorticoids in water with the aid of experimental design

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An efficient and inexpensive method using vortex-assisted surfactant-enhanced emulsification microextraction (VASEME) based on solidification of floating organic droplet coupled with ultraperformance liquid chromatography–tandem mass spectrometry is proposed for the analysis of glucocorticoids in water samples (river water and hospital wastewater). VASEME was optimized by the experimental validation of Plackett–Burman design and central composite design, which has been co-related to experimental design. Plackett–Burman design showed that factors such as vortex time, surfactant concentration, and pH significantly affect the extraction efficiency of the method. Method validation was characterized by an acceptable calibration range of 1–1000 ng L−1, and the limit of detection was in the range from 2.20 to 8.12 ng L−1 for glucocorticoids. The proposed method was applied to determine glucocorticoids in river water and hospital wastewater in Lucknow, India. It is reliable and rapid and has potential application for analysis of glucocorticoids in environmental aqueous samples.

Low density based extraction of gluococorticoids by using design of experiment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim S-C, Carlson K. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. Water Res. 2006;40(13):2549–60.

    Article  CAS  Google Scholar 

  2. Samanidou VF, Karageorgou EG, Papadoyannis IN. Simultaneous determination of testosterone and its major metabolite epitestosterone in biological fluids by HPLC. J Liq Chromatogr Relat Technol. 2007;30(9-10):1317–31.

    Article  CAS  Google Scholar 

  3. Chiesa L, Nobile M, Panseri S, Vigo D, Pavlovic R, Arioli F. Suitability of bovine bile compared to urine for detection of free, sulfate and glucuronate boldenone, androstadienedione, cortisol, cortisone, prednisolone, prednisone and dexamethasone by LC-MS/MS. Food Chem. 2015;188:473–80.

    Article  CAS  Google Scholar 

  4. Chang H, Wan Y, Hu J. Determination and source apportionment of five classes of steroid hormones in urban rivers. Environ Sci Technol. 2009;43(20):7691–8.

    Article  CAS  Google Scholar 

  5. Vieno NM, Tuhkanen T, Kronberg L. Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol. 2005;39(21):8220–6.

    Article  CAS  Google Scholar 

  6. Arditsoglou A, Voutsa D. Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ Sci Pollut Res. 2008;15(3):228–36.

    Article  CAS  Google Scholar 

  7. Crain A, GuilletteJr LJ. Environmental endocrine disruptors: an evolutionary perspective: CRC Press; 2000.

  8. Richardson SD. Water analysis: emerging contaminants and current issues. Anal Chem. 2009;81(12):4645–77.

    Article  CAS  Google Scholar 

  9. Stumpf M, Ternes TA, Wilken R-D, Rodrigues SV, Baumann W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro. Brazil Sci Total Environ. 1999;225(1):135–41.

    Article  Google Scholar 

  10. Sun H, Kang Z, Li H, Zhang J, Lv Y. Quantitative determination and confirmation of five synthetic glucocorticoid residues in milk powder by gel permeation chromatography–liquid chromatography–tandem mass spectrometry. Food Anal Methods. 2012;5(4):643–50.

    Article  Google Scholar 

  11. Callejas SL, Biddlecombe RA, Jones AE, Joyce KB, Pereira AI, Pleasance S. Determination of the glucocorticoid fluticasone propionate in plasma by automated solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B. 1998;718(2):243–50.

    Article  CAS  Google Scholar 

  12. Volmer DA, Hui JP. Rapid determination of corticosteroids in urine by combined solid phase microextraction/liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(17):1926–34.

    Article  CAS  Google Scholar 

  13. Amendola L, Garribba F, Botrè F. Determination of endogenous and synthetic glucocorticoids in human urine by gas chromatography–mass spectrometry following microwave-assisted derivatization. Anal Chim Acta. 2003;489(2):233–43.

    Article  CAS  Google Scholar 

  14. Krone N, Hughes BA, Lavery GG, Stewart PM, Arlt W, Shackleton CH. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol. 2010;121(3):496–504.

    Article  CAS  Google Scholar 

  15. Liu R, Zhou JL, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction gas chromatography mass spectrometry. J Chromatogr A. 2004;1022(1):179–89.

    Article  CAS  Google Scholar 

  16. Kelly C. Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography mass spectrometry and gas chromatography-tandem mass spectrometry. J Chromatogr A. 2000;872(1):309–14.

    Article  CAS  Google Scholar 

  17. Yang L, Luan T, Lan C. Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography mass spectrometry. J Chromatogr A. 2006;1104(1):23–32.

    Article  CAS  Google Scholar 

  18. Walker CJ, Cowan DA, Taylor NF, Kicman AT. Determination of xenobiotic glucocorticoids by gas chromatography-mass spectrometry for clinical purposes. Endoc Abstr. 2006;12:119.

    Google Scholar 

  19. Cui X, Shao B, Zhao R, Yang Y, Hu J, Tu X. Simultaneous determination of seventeen glucocorticoids residues in milk and eggs by ultra-performance liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(15):2355–64.

    Article  CAS  Google Scholar 

  20. Almeida C, Nogueira JMF. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J Pharm Biomed Anal. 2006;41(4):1303–11.

    Article  CAS  Google Scholar 

  21. Herrero P, Borrull F, Pocurull E, Marce RM. Determination of glucocorticoids in sewage and river waters by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2012;1224:19–26.

    Article  CAS  Google Scholar 

  22. Qin H, Li B, Liu MS, Yang YL. Separation and pre-concentration of glucocorticoids in water samples by ionic liquid supported vortex assisted synergic microextraction and HPLC determination. J Sep Sci. 2013;36(8):1463–9.

    Article  CAS  Google Scholar 

  23. Sniecinska-Cooper AM, Shah AJ, Dimitriou D, Iles RK, Butler SA, Bayford R. Determination of urinary cortisol, cortisone and 6-sulfatoxymelatonin using dilute and shoot ultra-high pressure liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2015;978:18–23.

    Article  Google Scholar 

  24. Chen D, Tao Y, Liu Z, Zhang H, Liu Z, Wang Y, et al. Development of a liquid chromatography-tandem mass spectrometry with pressurized liquid extraction for determination of glucocorticoid residues in edible tissues. J Chromatogr B. 2011;879(2):174–80.

    Article  CAS  Google Scholar 

  25. De Clercq N, Bussche JV, Croubels S, Delahaut P, Vanhaecke L. Development and validation of a high-resolution mass-spectrometry based method to study the long-term stability of natural and synthetic glucocorticoids in faeces. J Chromatogr A. 2014;1336:76–86.

    Article  Google Scholar 

  26. DiFrancesco R, Frerichs V, Donnelly J, Hagler C, Hochreiter J, Tornatore KM. Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2007;859(1):42–51.

    Article  CAS  Google Scholar 

  27. Frerichs VA, Tornatore KM. Determination of the glucocorticoids prednisone, prednisolone, dexamethasone, and cortisol in human serum using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B. 2004;802(2):329–38.

    Article  CAS  Google Scholar 

  28. Vonaparti A, Lyris E, Panderi I, Koupparis M, Georgakopoulos C. Direct injection LC/ESI/MS horse urine analysis for the quantification and identification of threshold substances for doping control. I. determination of hydrocortisone. J Mass Spectrom. 2008;43(9):1255–64.

    Article  CAS  Google Scholar 

  29. Xue X, Zheng C, Jifeng L, Jing Z, Huihua D, Zuhong L. Study on dissolution mechanism of cortisol and cortisone from hair matrix with liquid chromatography-tandem mass spectrometry. Clin Chim Acta. 2013;421:62–72.

    Article  Google Scholar 

  30. Fiori J, Andrisano V. LC-MS method for the simultaneous determination of six glucocorticoids in pharmaceutical formulations and counterfeit cosmetic products. J Pharm Biomed Anal. 2014;91:185–92.

    Article  CAS  Google Scholar 

  31. Shou M, Galinada WA, Wei Y-C, Tang Q, Markovich RJ, Rustum AM. Development and validation of a stability-indicating HPLC method for simultaneous determination of salicylic acid, betamethasone dipropionate and their related compounds in Diprosalic Lotion®. J Pharm Biomed Anal. 2009;50(3):356–61.

    Article  CAS  Google Scholar 

  32. Ho EN, Leung DK, Wan TS, Nola HY. Comprehensive screening of anabolic steroids, corticosteroids, and acidic drugs in horse urine by solid-phase extraction and liquid chromatography–mass spectrometry. J Chromatogr A. 2006;1120(1):38–53.

    Article  CAS  Google Scholar 

  33. Andersen JH, Hansen LG, Pedersen M. Optimization of solid phase extraction clean up and validation of quantitative determination of corticosteroids in urine by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2008;617(1):216–24.

    Article  CAS  Google Scholar 

  34. Kumazawa T, Lee X-P, Sato K, Suzuki O. Solid-phase microextraction and liquid chromatography/mass spectrometry in drug analysis. Anal Chim Acta. 2003;492(1):49–67.

    Article  CAS  Google Scholar 

  35. Draisci R, Palleschi L, Ferretti E, Marchiafava C, Lucentini L, Cammarata P. Quantification of 17β-estradiol residues in bovine serum by liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization. Analyst. 1998;123(12):2605–9.

    Article  CAS  Google Scholar 

  36. Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A. 2005;1089(1):1–17.

    Article  Google Scholar 

  37. Rezaee M, Assadi Y, Hosseini M-RM, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116(1):1–9.

    Article  CAS  Google Scholar 

  38. Wu Q, Chang Q, Wu C, Rao H, Zeng X, Wang C, et al. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamate pesticides in water samples by high performance liquid chromatography. J Chromatogr A. 2010;1217(11):1773–8.

    Article  CAS  Google Scholar 

  39. Shamsipur M, Jouybari TA, Barati A, Mahmoudi M, Amin N, Pashabadi A. A manual shaking-enhanced, ultrasound-assisted dispersive liquid–liquid microextraction for the determination of betamethasone and dexamethasone: optimization using Response surface methodology. Anal Methods. 2014;6(13):4542–50.

    Article  CAS  Google Scholar 

  40. Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N. Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta. 2010;80(5):2057–62.

    Article  CAS  Google Scholar 

  41. Zgoła-Grześkowiak A, Grześkowiak T. Dispersive liquid-liquid microextraction. Trends Anal Chem. 2011;30(9):1382–99.

    Article  Google Scholar 

  42. Ghorbani M, Chamsaz M, Rounaghi GH, Aghamohammadhasani M, Seyedin O, Lahoori NA. Development of a novel ultrasonic-assisted magnetic dispersive solid-phase microextraction method coupled with high performance liquid chromatography for determination of mirtazapine and its metabolites in human urine and water samples employing experimental design. J Anal Bioanal Chem. 2016;408(27):7719–29.

    Article  CAS  Google Scholar 

  43. Abilasha R, Kumar PV, Jen J-F. Low density extractant based ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of aniline and its chlorinated derivatives in water samples by HPLC-UV. http://research.nchu.edu.tw/upfiles/ADUpload/oc_downmul1408321695.pdf.

  44. Ezoddin M, Taghizadeh T, Majidi B. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of Cd and Ni in tea and water samples. Environ Technol. 2014;35(19):2401–9.

    Article  CAS  Google Scholar 

  45. Anjum F, Shahid M, Bukhari S, Potgieter JH. Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals. Environ Technol. 2014;35(3):262–70.

    Article  CAS  Google Scholar 

  46. Abdelhamid HN, Bhaisare ML, Wu H-F. Ceria nanocubic-ultrasonication assisted dispersive liquid–liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta. 2014;120:208–17.

    Article  CAS  Google Scholar 

  47. Khodadoust S, Hadjmohammadi M. Determination of N-methylcarbamate insecticides in water samples using dispersive liquid–liquid microextraction and HPLC with the aid of experimental design and desirability function. Anal Chim Acta. 2011;699(1):113–9.

    Article  CAS  Google Scholar 

  48. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–77.

    Article  CAS  Google Scholar 

  49. Khodadoust S, Ghaedi M. Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC–UV. J Sep Sci. 2013;36(11):1734–42.

    Article  CAS  Google Scholar 

  50. Sereshti H, Karimi M, Samadi S. Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil. J Chromatogr A. 2009;1216(2):198–204.

    Article  CAS  Google Scholar 

  51. Masson P. Quality control techniques for routine analysis with liquid chromatography in laboratories. J Chromatogr A. 2007;1158(1):168–73.

    Article  CAS  Google Scholar 

  52. Konieczka P, Namieśnik J. Estimating uncertainty in analytical procedures based on chromatographic techniques. J Chromatogr A. 2010;1217(6):882–91.

    Article  CAS  Google Scholar 

  53. Whitmire M, Ammerman J, de Lisio P, Killmer J, Kyle D, Mainstone E, et al. LC-MS/MS bioanalysis method development, validation, and sample analysis: points to consider when conducting nonclinical and clinical studies in accordance with current regulatory guidances. J Anal Bioanal Tech. 2013; 2011.

  54. Hall TG, Smukste I, Bresciano KR, Wang Y, McKearn D, Savage RE. Identifying and overcoming matrix effects in drug discovery and development. In: Prasain J, editor. Tandem mass spectrometry - applications and principles. InTech; 2012. doi:10.5772/32108

  55. Stokvis E, Rosing H, Beijnen JH. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom. 2005;19(3):401–7.

    Article  CAS  Google Scholar 

  56. Wieling J. LC-MS-MS experiences with internal standards. Chromatographia. 2002;55(1):S107–13.

    Article  CAS  Google Scholar 

  57. Matuszewski B, Constanzer M, Chavez-Eng C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30.

    Article  CAS  Google Scholar 

  58. Kumari R, Patel DK, Panchal S, Jha RR, Satyanarayana G, Asati A, et al. Fast agitated directly suspended droplet microextraction technique for the rapid analysis of eighteen organophosphorus pesticides in human blood. J Chromatogr A. 2015;1377:27–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Director, CSIR-Indian Institute of Toxicology Research, Lucknow, India, for providing the necessary facilities for this research study. The authors also thank the University Grant Commission, GAP project-155, New Delhi, India, and the CSIR-INDEPTH project for financial assistance. We are also thankful to B.D. Bhattacharji for support in terms of manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Humans or animals study

This study does not involve any experiments on humans or animals performed by any of the authors.

Additional information

This is CSIR-IITR institutional communication no. 3448.

Ankita Asati and G. N. V. Satyanarayana contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asati, A., Satyanarayana, G.N.V. & Patel, D.K. Vortex-assisted surfactant-enhanced emulsification microextraction combined with LC–MS/MS for the determination of glucocorticoids in water with the aid of experimental design. Anal Bioanal Chem 409, 2905–2918 (2017). https://doi.org/10.1007/s00216-017-0236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0236-7

Keywords

Navigation