Skip to main content

Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability

Abstract

An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Xu P, Li X, Yu H, Xu T. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules. Sensors. 2014;14(10):19023.

    CAS  Article  Google Scholar 

  2. Zhao H, Rizal B, McMahon G, Wang H, Dhakal P, Kirkpatrick T, et al. Ultrasensitive chemical detection using a nanocoax sensor. ACS Nano. 2012;6(4):3171–8.

    CAS  Article  Google Scholar 

  3. Yamagiwa H, Sato S, Fukawa T, Ikehara T, Maeda R, Mihara T, et al. Detection of volatile organic compounds by weight-detectable sensors coated with metal-organic frameworks. Sci Rep. 2014;4:6247.

    CAS  Article  Google Scholar 

  4. Bhattacharyya D, Senecal K, Marek P, Senecal A, Gleason KK. High surface area flexible chemiresistive biosensor by oxidative chemical vapor deposition. Adv Funct Mater. 2011;21(22):4328–37.

    CAS  Article  Google Scholar 

  5. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv. 2010;28(2):232–54.

    CAS  Article  Google Scholar 

  6. Ricciardi C, Canavese G, Castagna R, Digregorio G, Ferrante I, Marasso SL, et al. Online portable microcantilever biosensors for Salmonella enterica serotype enteritidis detection. Food Bioprocess Technol. 2010;3(6):956–60.

    Article  Google Scholar 

  7. Xu P, Yu H, Li X. Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors. Anal Chem. 2011;83(9):3448–54.

    CAS  Article  Google Scholar 

  8. Johnson-White B, Zeinali M, Shaffer KM, Patterson Jr CH, Charles PT, Markowitz MA. Detection of organics using porphyrin embedded nanoporous organosilicas. Biosens Bioelectron. 2007;22(6):1154–62.

    CAS  Article  Google Scholar 

  9. Zhang H-X, Cao A-M, Hu J-S, Wan L-J, Lee S-T. Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Anal Chem. 2006;78(6):1967–71.

    CAS  Article  Google Scholar 

  10. Stassi S, Cauda V, Fiorilli S, Ricciardi C. Surface area enhancement by mesoporous silica deposition on microcantilever sensors for small molecule detection. J Mater Chem C. 2015;3(48):12507–13.

    CAS  Article  Google Scholar 

  11. Campbell GA, Mutharasan R. Use of piezoelectric-excited millimeter-sized cantilever sensors to measure albumin interaction with self-assembled monolayers of alkanethiols having different functional headgroups. Anal Chem. 2006;78(7):2328–34.

    CAS  Article  Google Scholar 

  12. Ricciardi C, Fiorilli S, Bianco S, Canavese G, Castagna R, Ferrante I, et al. Development of microcantilever-based biosensor array to detect angiopoietin-1, a marker of tumor angiogenesis. Biosens Bioelectron. 2010;25(5):1193–8.

    CAS  Article  Google Scholar 

  13. Bardea A, Dagan A, Ben-Dov I, Amit B, Willner I. Amplified microgravimetric quartz-crystal-microbalance analyses of oligonucleotide complexes: a route to a Tay-Sachs biosensor device. Chem Commun. 1998;7:839–40.

    Article  Google Scholar 

  14. Chu X, Zhao ZL, Shen GL, Yu RQ. Quartz crystal microbalance immunoassay with dendritic amplification using colloidal gold immunocomplex. Sensors Actuators B Chem. 2006;114(2):696–704.

    CAS  Article  Google Scholar 

  15. Palaniappan A, Li X, Tay FEH, Li J, Su X. Cyclodextrin functionalized mesoporous silica films on quartz crystal microbalance for enhanced gas sensing. Sensors Actuators B Chem. 2006;119(1):220–6.

    CAS  Article  Google Scholar 

  16. Kikuchi M, Shiratori S. Quartz crystal microbalance (QCM) sensor for CH3SH gas by using polyelectrolyte-coated sol–gel film. Sensors Actuators B Chem. 2005;108(1–2 SPEC. ISS):564–71.

    CAS  Article  Google Scholar 

  17. Cauda V, Stassi S, Lamberti A, Morello M, Fabrizio Pirri C, Canavese G. Leveraging ZnO morphologies in piezoelectric composites for mechanical energy harvesting. Nano Energy. 2015;18:212–21.

    CAS  Article  Google Scholar 

  18. Gomez JL, Tigli O. Zinc oxide nanostructures: from growth to application. J Mater Sci. 2013;48(2):612–24.

    CAS  Article  Google Scholar 

  19. Ottone C, Bejtka K, Chiodoni A, Farías V, Canavese G, Roppolo I, et al. Comprehensive study of the templating effect on the ZnO nanostructure formation within porous hard membranes. New J Chem. 2014;38:2058–65.

    CAS  Article  Google Scholar 

  20. Laurenti M, Verna A, Fontana M, Stassi S, Canavese G, Marasso SL, et al. How micropatterning and surface functionalization affect the wetting behavior of ZnO nanostructured surfaces. Adv Mater Interfaces. 2016;3(13).

  21. Gazia R, Motto P, Stassi S, Sacco A, Virga A, Lamberti A, et al. Photodetection and piezoelectric response from hard and flexible sponge-like ZnO-based structures. Nano Energy. 2013;2(6):1294–302.

    CAS  Article  Google Scholar 

  22. Chen P, Gu L, Xue X, Song Y, Zhu L, Cao X. Facile synthesis of highly uniform ZnO multipods as the supports of Au and Ag nanoparticles. Mater Chem Phys. 2010;122(1):41–8.

    CAS  Article  Google Scholar 

  23. Jiang L, Li G, Ji Q, Peng H. Morphological control of flower-like ZnO nanostructures. Mater Lett. 2007;61(10):1964–7.

    CAS  Article  Google Scholar 

  24. Kim JS, Park WI, Lee CH, Yi GC. ZnO nanorod biosensor for highly sensitive detection of specific protein binding. J Korean Phys Soc. 2006;49(4):1635–9.

    CAS  Google Scholar 

  25. Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP. Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta. 2012;737:1–21.

    CAS  Article  Google Scholar 

  26. Zhou Y, Wang L, Ye Z, Zhao M, Huang J. Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors. Electrochim Acta. 2014;115:277–82.

    CAS  Article  Google Scholar 

  27. Sanginario A, Cauda V, Bonanno A, Bejtka K, Sapienza S, Demarchi D. An electronic platform for real-time detection of bovine serum albumin by means of amine-functionalized zinc oxide microwires. RSC Adv. 2016;6(2):891–7.

    CAS  Article  Google Scholar 

  28. Zhang Y, Kang Z, Yan X, Liao Q. ZnO nanostructures in enzyme biosensors. Sci China Mater. 2015;58(1):60–76.

    CAS  Article  Google Scholar 

  29. Neveling DP, Van Den Heever TS, Perold WJ, Dicks LMT. A nanoforce ZnO nanowire-array biosensor for the detection and quantification of immunoglobulins. Sensors Actuators B Chem. 2014;203:102–10.

    CAS  Article  Google Scholar 

  30. Chiadò A, Palmara G, Ricciardi S, Frascella F, Castellino M, Tortello M, et al. Optimization and characterization of a homogeneous carboxylic surface functionalization for silicon-based biosensing. Colloids Surf B: Biointerfaces. 2016;143:252–9.

    Article  Google Scholar 

  31. Yoshida T. Leaching of zinc oxide in acidic solution. Mater Trans. 2003;44(12):2489–93.

    CAS  Article  Google Scholar 

  32. Rivera VF, Auras F, Motto P, Stassi S, Canavese G, Celasco E, et al. Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires. Chem Eur J. 2013;19(43):14665–74.

    CAS  Article  Google Scholar 

  33. Chiadò A, Novara C, Lamberti A, Geobaldo F, Giorgis F, Rivolo P. Immobilization of oligonucleotides on metal-dielectric nanostructures for miRNA detection. Anal Chem. 2016;88(19):9554–63.

    Article  Google Scholar 

  34. Palmara G, Chiadò A, Calmo R, Ricciardi C. Succinic anhydride functionalized microcantilevers for protein immobilization and quantification. Anal Bioanal Chem. 2016;408(28):7917–26.

    CAS  Article  Google Scholar 

  35. Xu C, Shin P, Cao L, Gao D. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C. 2010;114(1):125–9.

    CAS  Article  Google Scholar 

  36. Tamayo J, Ramos D, Mertens J, Calleja M. Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl Phys Lett. 2006;89(22).

  37. Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol. 2011;6(4):203–15.

    CAS  Article  Google Scholar 

  38. Ricciardi C, Ferrante I, Castagna R, Frascella F, Marasso SL, Santoro K, et al. Immunodetection of 17B-estradiol in serum at ppt level by microcantilever resonators. Biosens Bioelectron. 2013;40(1):407–11.

    CAS  Article  Google Scholar 

  39. Lizandara-Pueyo C, Van Den Berg MWE, De Toni A, Goes T, Polarz S. Nucleation and growth of ZnO in organic solvents—an in situ study. J Am Chem Soc. 2008;130(49):16601–10.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) through FIRB2010-NEWTON grant and NANOMAX Italian flagship grant, and Fondazione Cassa di Risparmio di Cuneo through FRUITSENSOR grant are acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Stassi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 467 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stassi, S., Chiadò, A., Cauda, V. et al. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability. Anal Bioanal Chem 409, 2615–2625 (2017). https://doi.org/10.1007/s00216-017-0204-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0204-2

Keywords

  • Zinc oxide
  • Nanowires
  • Biosensors
  • Microcantilever
  • Functionalization
  • Protein immobilization