Advertisement

Analytical and Bioanalytical Chemistry

, Volume 409, Issue 9, pp 2477–2488 | Cite as

Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry

  • Alexander Zherebker
  • Yury Kostyukevich
  • Alexey Kononikhin
  • Oleg Kharybin
  • Andrey I. Konstantinov
  • Kirill V. Zaitsev
  • Eugene Nikolaev
  • Irina V. Perminova
Research Paper

Abstract

Here, we report a novel approach to enumeration of carboxylic groups carried by individual molecules of humic substances using selective chemical modification and isotopic labeling (deuteromethylation) and high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). Esterification was conducted with a use of thionyl chloride–deuteromethanol reagent under mild conditions to avoid transesterification. The deuteromethylated products were subjected to solid phase extraction using PPL Bond Elute cartridges prior to FTICR MS analysis. An amount of carboxyl groups in the individual molecular component was estimated from the length of identified deuteromethylation series. The method allowed for discerning between compounds with close elemental compositions possessing different protolytic properties. We found that different carboxylic moieties occupy distinct regions in molecular space of humic substances (HS) projected onto Van Krevelen diagram. These locations do not depend on the source of the humic material and can be assigned to carboxyl-rich alicyclic molecules (5 to 6 COOH), hydrolyzable tannins (3-4 COOH), lignins (1 to 2 COOH), condensed tannins and lignans (0 to 1 COOH), and carbohydrates (0 COOH). At the same time, the alignment pattern of these carboxylated species along the structural evolution lines in Van Krevelen diagrams was characteristic to the specific transformation processes undergone by the humic materials in the different environments. The obtained data enable mapping of molecular ensemble of HS with regards to their specific acidic compartments and might be used for directed fractionation of HS.

Graphical abstract

Selective isotopic labeling followed by FTICR MS enables discerning between humic molecules with close elemental compositions carrying different numbers of carboxylic groups.

Keywords

Humic substances FTICR MS Isotopic labeling Modification Carboxylic group 1H NMR spectroscopy 

Notes

Acknowledgements

We would like to acknowledge the Interdisciplinary Research Centre for Magnetic Tomography and Spectroscopy of the Lomonosov MSU and personally Dr. Borisova N.E. for the assistance in 1H NMR analysis.

This work was partially supported by the Russian Foundation for Basic Research (grants 16-04-01753-a and 16-33-00914-mol-a). 1H NMR spectroscopy studies were supported by the Russian Science Foundation (grant 16-14-00167), and the high-resolution mass spectrometry study was funded by the Russian Science Foundation grant no. 14-24-00114.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2017_197_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1684 kb)

References

  1. 1.
    MacCarthy P. The principles of humic substances. SOIL Sci. 2001;166:738–51. doi: 10.1097/00010694-200111000-00003.CrossRefGoogle Scholar
  2. 2.
    Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–32.CrossRefGoogle Scholar
  3. 3.
    Simpson AJ, Kingery WL, Hayes MH, Spraul M, Humpfer E, Dvortsak P, et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften. 2002;89:84–8. doi: 10.1007/s00114-001-0293-8.CrossRefGoogle Scholar
  4. 4.
    Abate G, Masini JC. Acid-basic and complexation properties of a sedimentary humic acid. A study on the Barra Bonita reservoir of Tietê river, São Paulo State, Brazil. J Braz Chem Soc. 2001;12:109–16. doi: 10.1590/S0103-50532001000100015.CrossRefGoogle Scholar
  5. 5.
    Aeschbacher M, Graf C, Schwarzenbach RP, Sander M. Antioxidant properties of humic substances. Environ Sci Technol. 2012;46:4916–25. doi: 10.1021/es300039h.CrossRefGoogle Scholar
  6. 6.
    Perminova IV, Grechishcheva NY, Kovalevskii DV, Kudryavtsev AV, Petrosyan VS, Matorin DN. Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environ Sci Technol. 2001;35:3841–8. doi: 10.1021/es001699b.CrossRefGoogle Scholar
  7. 7.
    Perminova IV, Grechishcheva NY, Petrosyan VS. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ Sci Technol. 1999;33:3781–7. doi: 10.1021/es990056x.CrossRefGoogle Scholar
  8. 8.
    Wong MTF, Nortcliff S, Swift RS. Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure, and peat applied to tropical soils. Commun Soil Sci Plant Anal. 1998;29:2927–37. doi: 10.1080/00103629809370166.CrossRefGoogle Scholar
  9. 9.
    Bonn BA, Fish W. Variability in the measurement of humic carboxyl content. Environ Sci Technol. 1991;25:232–40. doi: 10.1021/es00014a003.CrossRefGoogle Scholar
  10. 10.
    Perdue EM, Benner R. Marine organic matter. In: N. Senesi, B. Xing and PMH (ed) Biophys. Process. Involv. Nat. Nonliving Org. Matter Environ. Syst. Wiley. 2009; 407–449.Google Scholar
  11. 11.
    Ritchie JD, Perdue EM. Analytical constraints on acidic functional groups in humic substances. Org Geochem. 2008;39:783–99. doi: 10.1016/j.orggeochem.2008.03.003.CrossRefGoogle Scholar
  12. 12.
    Klučáková M, Kaláb M, Pekař M, Lapčík L. Study of structure and properties of humic and fulvic acids. II. Study of adsorption of Cu2+ ions to humic acids extracted from lignite. J Polym Mater. 2002;19:287–94.Google Scholar
  13. 13.
    Ephraim JH, Marinsky JA. Ultrafiltration as a technique for studying metal–humate interactions: studies with iron and copper. Anal Chim Acta. 1990;232:171–80. doi: 10.1016/S0003-2670(00)81233-7.CrossRefGoogle Scholar
  14. 14.
    Marinsky JA, Reddy MM, Ephraim JH, Mathuthu AS. Computational scheme for the prediction of metal ion binding by a soil fulvic acid. Anal Chim Acta. 1995;302:309–22. doi: 10.1016/0003-2670(94)00491-4.CrossRefGoogle Scholar
  15. 15.
    Koopal LK, van Riemsdijk WH, de Wit JCM, Benedetti MF. Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J Colloid Interface Sci. 1994;166:51–60. doi: 10.1006/jcis.1994.1270.CrossRefGoogle Scholar
  16. 16.
    Kinniburgh DG, Milne CJ, Benedetti MF, Pinheiro JP, Filius J, Koopal LK, et al. Metal ion binding by humic acid: application of the NICA-donnan model. Environ Sci Technol. 1996;30:1687–98. doi: 10.1021/es950695h.CrossRefGoogle Scholar
  17. 17.
    Arsenie I, Boren H, Allard B. Determination of the carboxyl content in humic substances by methylation. Sci Total Environ. 1992;116:213–20. doi: 10.1016/0048-9697(92)90450-7.CrossRefGoogle Scholar
  18. 18.
    Mikita MA, Steelink C, Wershaw RL. Carbon-13 enriched nuclear magnetic resonance method for the determination of hydroxyl functionality in humic substances. Anal Chem. 1981;53:1715–7. doi: 10.1021/ac00234a041.CrossRefGoogle Scholar
  19. 19.
    Noyes TI, Leenheer JA. Proton nuclear-magnetic-resonance studies of fulvic acid from the Suwannee River. Humic Subst. Suwannee River, Georg. Interact. Prop. Propos. Struct. Open-File Rep. 87-557. 1989; 231-250, 8 fig, 5 tab, 23 ref.Google Scholar
  20. 20.
    Ricca G, Severini F, Di Silvestro G, Yuan C, Adani F. Derivatization and structural studies by spectroscopic methods of humic acids from Leonardite. Geoderma. 2000;98:115–25. doi: 10.1016/S0016-7061(00)00055-0.CrossRefGoogle Scholar
  21. 21.
    Lange RG. Cleavage of alkyl o-hydroxyphenyl ethers. J Org Chem. 1962;27:2037–9. doi: 10.1021/jo01053a030.CrossRefGoogle Scholar
  22. 22.
    Piccolo A. Characteristics of soil humic extracts obtained by some organic and inorganic solvents and purified by HCl-HF treatment. Soil Sci. 1988;146:418–26.CrossRefGoogle Scholar
  23. 23.
    Schnitzer M. The methylation of humic substances. Soil Sci. 1974;117:94–102.CrossRefGoogle Scholar
  24. 24.
    Hertkorn N, Perdue EM, Kettrup A. A potentiometric and 113Cd NMR study of cadmium complexation by natural organic matter at two different magnetic field strengths. Anal Chem. 2004;76:6327–41. doi: 10.1021/ac0400212.CrossRefGoogle Scholar
  25. 25.
    Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc. 2011;58:97–175. doi: 10.1016/j.pnmrs.2010.09.001.CrossRefGoogle Scholar
  26. 26.
    Bell NGA, Michalchuk AAL, Blackburn JWT, Graham MC, Uhrín D. Isotope-filtered 4D NMR spectroscopy for structure determination of humic substances. Angew Chem Int Ed Engl. 2015;54:8382–5. doi: 10.1002/anie.201503321.CrossRefGoogle Scholar
  27. 27.
    Kovalevskii DV, Permin AB, Perminova IV, Konnov DV, Petrosyan VS. Quantitative 1H NMR spectroscopic determination of exchangeable and backbone protons of humic substances. Moscow Univ Chem Bull. 1999;40:375–80.Google Scholar
  28. 28.
    Hertkorn N, Kettrup A. Molecular level structural analysis of natural organic matter and of humic substances by multinuclear and higher dimensional NMR spectroscopy. In: Use Humic Subst. to Remediat. Polluted Environ. From Theory to Pract. Springer-Verlag, Berlin/Heidelberg. 2005; 391–435.Google Scholar
  29. 29.
    Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM. Natural organic matter and the event horizon of mass spectrometry. Anal Chem. 2008;80:8908–19.CrossRefGoogle Scholar
  30. 30.
    Hertkorn N, Ruecker C, Meringer M, Gugisch R, Frommberger M, Perdue EM, et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal Bioanal Chem. 2007;389:1311–27. doi: 10.1007/s00216-007-1577-4.CrossRefGoogle Scholar
  31. 31.
    Stenson AC, Marshall AG, Cooper WT. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem. 2003;75:1275–84. doi: 10.1021/ac026106p.CrossRefGoogle Scholar
  32. 32.
    Sleighter RL, Hatcher PG. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectrom. 2007;42:559–74. doi: 10.1002/jms.1221.CrossRefGoogle Scholar
  33. 33.
    Perminova IV, Dubinenkov IV, Kononikhin AS, Konstantinov AI, Zherebker AY, Andzhushev MA, et al. Molecular mapping of sorbent selectivities with respect to isolation of Arctic dissolved organic matter as measured by Fourier transform mass spectrometry. Environ Sci Technol. 2014;48:7461–8. doi: 10.1021/es5015423.CrossRefGoogle Scholar
  34. 34.
    Kim S, Kramer RW, Hatcher PG. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem. 2003;75:5336–44. doi: 10.1021/ac034415p.CrossRefGoogle Scholar
  35. 35.
    Kujawinski EB, Behn MD. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Anal Chem. 2006;78:4363–73. doi: 10.1021/ac0600306.CrossRefGoogle Scholar
  36. 36.
    Stenson AC, Landing WM, Marshall AG, Cooper WT. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal Chem. 2002;74:4397–409. doi: 10.1021/ac020019f.CrossRefGoogle Scholar
  37. 37.
    Plancque G, Amekraz B, Moulin V, Toulhoat P, Moulin C. Molecular structure of fulvic acids by electrospray with quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:827–35.CrossRefGoogle Scholar
  38. 38.
    Cortés-Francisco N, Caixach J. Fragmentation studies for the structural characterization of marine dissolved organic matter. Anal Bioanal Chem. 2015;407:2455–62.CrossRefGoogle Scholar
  39. 39.
    Witt M, Fuchser J, Koch BP. Fragmentation studies of fulvic acids using collision induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2009;81:2688–94. doi: 10.1021/ac802624s.CrossRefGoogle Scholar
  40. 40.
    Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Simple atmospheric hydrogen/deuterium exchange method for enumeration of labile hydrogens by electrospray ionization mass spectrometry. Anal Chem. 2013;85:5330–4. doi: 10.1021/ac4006606.CrossRefGoogle Scholar
  41. 41.
    Kostyukevich Y, Kononikhin A, Popov I, Spasskiy A, Nikolaev E. In ESI-source H/D exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66 kDa: the role of the temperature of the desolvating capillary on H/D exchange. J Mass Spectrom. 2015;50:49–55. doi: 10.1002/jms.3535.CrossRefGoogle Scholar
  42. 42.
    Zherebker AY, Airapetyan D, Konstantinov AI, Kostyukevich YI, Kononikhin AS, Popov IA, et al. Synthesis of model humic substances: a mechanistic study using controllable H/D exchange and Fourier transform ion cyclotron resonance mass spectrometry. Analyst. 2015;140:4708–19. doi: 10.1039/c5an00602c.CrossRefGoogle Scholar
  43. 43.
    Zherebker A, Kostyukevich Y, Kononikhin A, Roznyatovsky VA, Popov I, Grishin YK, et al. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids. Analyst. 2016;141:2426–34. doi: 10.1039/c5an02676h.CrossRefGoogle Scholar
  44. 44.
    Kostyukevich Y, Kononikhin A, Popov I, Kharybin O, Perminova I, Konstantinov A, et al. Enumeration of labile hydrogens in natural organic matter by use of hydrogen/deuterium exchange Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2013;85:11007–13. doi: 10.1021/ac402609x.CrossRefGoogle Scholar
  45. 45.
    Kostyukevich Y, Kononikhin A, Zherebker A, Popov I, Perminova I, Nikolaev E. Enumeration of non-labile oxygen atoms in dissolved organic matter by use of 16O/18O exchange and Fourier transform ion-cyclotron resonance mass spectrometry. Anal Bioanal Chem. 2014;406:6655–64. doi: 10.1007/s00216-014-8097-9.CrossRefGoogle Scholar
  46. 46.
    Swift RS. Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, MES, editors. Methods soil Anal. Part 3. Chem. methods, SSSA Book Series 5. Madison: SSSA; 1996. p. 1036.Google Scholar
  47. 47.
    Hosangadi BD, Dave RH. An efficient general method for esterification of aromatic carboxylic acids. Tetrahedron Lett. 1996;37:6375–8. doi: 10.1016/0040-4039(96)01351-2.CrossRefGoogle Scholar
  48. 48.
    Andjelkovic T, Perovic J, Purenovic M, Blagojevic S, Nikolic R, Andjelkovic D, et al. A direct potentiometric titration study of the dissociation of humic acid with selectively blocked functional groups. Eclética Química. 2006;31:39–46. doi: 10.1590/S0100-46702006000300005.CrossRefGoogle Scholar
  49. 49.
    Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Ocean Methods. 2008;6:230–5. doi: 10.4319/lom.2008.6.230.CrossRefGoogle Scholar
  50. 50.
    Kunenkov EV, Kononikhin AS, Perminova IV, Hertkorn N, Gaspar A, Schmitt-Kopplin P, et al. Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter. Anal Chem. 2009;81:10106–15. doi: 10.1021/ac901476u.CrossRefGoogle Scholar
  51. 51.
    Sleighter RL, Liu Z, Xue J, Hatcher PG. Multivariate statistical approaches for the characterization of dissolved organic matter analyzed by ultrahigh resolution mass spectrometry. Environ Sci Technol. 2010;44:7576–82. doi: 10.1021/es1002204.CrossRefGoogle Scholar
  52. 52.
    Li J, Sha Y. A convenient synthesis of amino acid methyl esters. Molecules. 2008;13:1111–9. doi: 10.3390/molecules13051111.CrossRefGoogle Scholar
  53. 53.
    Sleighter RL, Hatcher PG. Fourier transform mass spectrometry for the molecular level characterization of natural organic matter: instrument capabilities, applications, and limitations. INTECH Open Access Publisher. 2011.Google Scholar
  54. 54.
    Nebbioso A, Piccolo A, Spiteller M. Limitations of electrospray ionization in the analysis of a heterogeneous mixture of naturally occurring hydrophilic and hydrophobic compounds. Rapid Commun Mass Spectrom. 2010;24:3163–70. doi: 10.1002/rcm.4749.CrossRefGoogle Scholar
  55. 55.
    Nebbioso A, Piccolo A. Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules. 2011;12:1187–99. doi: 10.1021/bm101488e.CrossRefGoogle Scholar
  56. 56.
    Reed DR, Kass SR. Hydrogen-deuterium exchange at non-labile sites: a new reaction facet with broad implications for structural and dynamic determinations. J Am Soc Mass Spectrom. 2001;12:1163–8. doi: 10.1016/S1044-0305(01)00303-8.CrossRefGoogle Scholar
  57. 57.
    Nebbioso A, Piccolo A, Lamshöft M, Spiteller M. Molecular characterization of an end-residue of humeomics applied to a soil humic acid. RSC Adv. 2014;4:23658–65. doi: 10.1039/C4RA01619J.CrossRefGoogle Scholar
  58. 58.
    Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim Cosmochim Acta. 2006;70:2990–3010.CrossRefGoogle Scholar
  59. 59.
    Stubbins A, Spencer RGM, Chen H, Hatcher PG, Mopper K, Hernes PJ, et al. Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr. 2010;55:1467–77. doi: 10.4319/lo.2010.55.4.1467.CrossRefGoogle Scholar
  60. 60.
    Kovacs K, Gaspar A, Sajgo C, Schmitt-Kopplin P, Tombacz E. Comparative study on humic substances isolated in thermal groundwaters from deep aquifers below 700 m. Geochem J. 2012;46:211–24.CrossRefGoogle Scholar
  61. 61.
    Kovács K, Gáspár A, Sajgó C, Schmitt-Kopplin P, Tombácz E. Comparison of humic substances isolated from thermal water and surface water by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Eur J Mass Spectrom (Chichester, Eng). 2010;16:625–30. doi: 10.1255/ejms.1087.CrossRefGoogle Scholar
  62. 62.
    Gondar D, Lopez R, Fiol S, Antelo JM, Arce F. Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma. 2005;126:367–74. doi: 10.1016/j.geoderma.2004.10.006.CrossRefGoogle Scholar
  63. 63.
    D’Andrilli J, Cooper WT, Foreman CM, Marshall AG. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability. Rapid Commun Mass Spectrom. 2015;29:2385–401. doi: 10.1002/rcm.7400.CrossRefGoogle Scholar
  64. 64.
    D’Andrilli J, Foreman CM, Marshall AG, McKnight DM. Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Org Geochem. 2013;65:19–28. doi: 10.1016/j.orggeochem.2013.09.013.CrossRefGoogle Scholar
  65. 65.
    Hertkorn N, Permin A, Perminova I, Kovalevskii D, Yudov M, Petrosyan V, et al. Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy. J Environ Qual. 2002;31:375–87.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alexander Zherebker
    • 1
  • Yury Kostyukevich
    • 2
    • 3
    • 4
    • 5
  • Alexey Kononikhin
    • 3
    • 4
    • 5
  • Oleg Kharybin
    • 2
    • 5
  • Andrey I. Konstantinov
    • 1
  • Kirill V. Zaitsev
    • 1
  • Eugene Nikolaev
    • 2
    • 3
    • 4
    • 5
  • Irina V. Perminova
    • 1
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologySkolkovoRussia
  3. 3.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  4. 4.Institute for Energy Problems of Chemical Physics of RASMoscowRussia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations