Analytical and Bioanalytical Chemistry

, Volume 409, Issue 10, pp 2501–2518 | Cite as

Field flow fractionation techniques to explore the “nano-world”

Review

Abstract

Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.

Keywords

Field flow fractionation Nanoparticles Quantum dots Food additives Drug delivery systems Environmental nanoparticles 

References

  1. 1.
    Giddings JC. A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci. 1966;1:123–5.Google Scholar
  2. 2.
    Feynman RP. There's plenty of room at the bottom. Eng Sci. 1960;23(5):22–36.Google Scholar
  3. 3.
    Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, et al. Comparative assessment of nanomaterial definitions and safety evaluation consideration. Regul Toxicol Pharmacol. 2015;73(1):137–50.CrossRefGoogle Scholar
  4. 4.
    Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (Part 1): products on the market. Int J Nanomedicine. 2014;9:4357–73.CrossRefGoogle Scholar
  5. 5.
    Rauscher H, Roebben G, Amenta V, Boix Sanfeliu A, Calzolai L, Emons H, et al. Towards a review of the EC Recommendation for a definition of the term “nanomaterial” Part 1: compilation of information concerning the experience with the definition, JRC Scientific and Policy Report. In: Rauscher, H, Roebben G, editors. EUR 26567 EN. 2014.Google Scholar
  6. 6.
    Roebben G, Rauscher H, Amenta V, Aschberger K, Boix Sanfeliu A, Calzolai L, et al. Towards a review of the EC Recommendation for a definition of the term "nanomaterial" Part 2: assessment of collected information concerning the experience with the definition, JRC Scientific and Policy Report. In: Roebben G, Rauscher H, editors. EUR 26744 EN. 2014.Google Scholar
  7. 7.
    EU commission recommendation – 18 Oct. Recommendations on the definition of nanomaterial Official Journal of the European Union (2011/696/EU). 2011.Google Scholar
  8. 8.
    I.T. 80004-1:2010(E). In: I.O.f. Standardization, editor. Nanotechnologies—vocabulary—part 1: core terms, ISO/TS 80004-1:2010(E). Geneva, Switzerland; 2010.Google Scholar
  9. 9.
    I.T. 27687.2008(E). In: I.O.f. Standardization, editor. Nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofiber, and nanoplate, ISO/TS 27687:2008(E). Geneva, Switzerland; 2008.Google Scholar
  10. 10.
    Dudkiewicz A, Wagner S, Lehner A, Chaudhry Q, Pietravalle S, Tiede K, et al. A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions. Analyst. 2015;140:257–5267.CrossRefGoogle Scholar
  11. 11.
    Linsinger TPJ, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson N, et al. Requirements on measurements for the implementation of the European Commission definition of the term “nanometarial”. Joint Research Centre, Institute for Reference Materials and Measurements (IRMM). 2012. Available at http://publications.jrc.ec.europa.eu/repository/bitstream/JRC73260/irmm_nanomaterials%20(online).pdf. Accessed 13 Jan 2017.
  12. 12.
    Scientific Committee on Consumer Safety (SCCS). Guidance on the safety assessment of nanomaterials in cosmetics. SCCS/1484/12. 2012.Google Scholar
  13. 13.
    Scientific Committee EFSA. Scientific Opinion on Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2011;9(5):2140. doi:10.2903/j.efsa.2011.2140. 36 pp.CrossRefGoogle Scholar
  14. 14.
    Schimpf ME, Caldwell K, Giddings JC. Field flow fractionation handbook. New York: Wiley; 2000.Google Scholar
  15. 15.
    Williams S, Kim R, Caldwell KD. Field flow fractionation in biopolymer analysis. Wien: Springer; 2012.CrossRefGoogle Scholar
  16. 16.
    Hovingh ME, Thompson GE, Giddings JC. Column parameters in thermal field flow fractionation. Anal Chem. 1970;42:195–203.CrossRefGoogle Scholar
  17. 17.
    Giddings JC, Yang FJF, Myers MN. Sedimentation field flow fractionation. Anal Chem. 1974;46:1917–24.CrossRefGoogle Scholar
  18. 18.
    Giddings JC, Yang FJF, Myers MN. Flow field flow fractionation: a versatile new separation method. Science. 1976;193:1244–5.CrossRefGoogle Scholar
  19. 19.
    Huang Y, Wang X-B, Becker FF, Gascoyne PRC. Introducing di-electrophoresis as a new force field for field flow fractionation. Biophys J. 1997;73(2):1118–29.CrossRefGoogle Scholar
  20. 20.
    Castro A, Hoyos M. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound. Ultrasonics. 2016;66:166–71.CrossRefGoogle Scholar
  21. 21.
    Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem. 2015;3:48–67.CrossRefGoogle Scholar
  22. 22.
    Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, et al. Detection, characterization, and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta. 2016;904:10–32.CrossRefGoogle Scholar
  23. 23.
    Pitkänen L, Striegel AM. Size-exclusion chromatography of metal nanoparticles and quantum dots. TrAC Trends Anal Chem. 2016;80:311–20.CrossRefGoogle Scholar
  24. 24.
    Rakcheev D, Philippe A, Schaumann GE. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates. Anal Chem. 2013;85:10643–7.CrossRefGoogle Scholar
  25. 25.
    Philippe A, Schaumann GE. Evaluation of hydrodynamic chromatography coupled with UV-visible fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. PLoS ONE. 2014;9(2), e90559. doi:10.1371/journal.pone.0090559.CrossRefGoogle Scholar
  26. 26.
    Striegel MA. Hydrodynamic chromatography: packed columns, multiple detectors, and microcapillaries. Anal Bioanal Chem. 2012;402(1):77–81.CrossRefGoogle Scholar
  27. 27.
    Aguirre M, Paulis M, Leiza JR. Particle nucleation and growth in seeded semi batch mini emulsion polymerization of hybrid CeO2/acrylic latexes. Polymer. 2014;55:752–61.CrossRefGoogle Scholar
  28. 28.
    Gray EP, Bruton TA, Higgins CP, Halden RU, Westerhoff P, Ranville JF. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field flow fractionation (AF4) coupled to ICP-MS. J Anal At Spectrom. 2012;27:1532–9.CrossRefGoogle Scholar
  29. 29.
    Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C. Critical experimental evaluation of key methods to detect, size, and quantify nanoparticulate silver. Anal Chem. 2014;86:12143–51.CrossRefGoogle Scholar
  30. 30.
    Marassi V, Casolari S, Roda B, Zattoni A, Reschiglian P, Panzavolta S, et al. Hollow-fiber flow field flow fractionation and multi-angle light scattering investigation of the size, shape, and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment. J Pharm Biomed Anal. 2015;106:92–9.CrossRefGoogle Scholar
  31. 31.
    Calzolai L, Gilliland D, Garcìa CP, Rossi F. Separation and characterization of gold nanoparticle mixtures by flow field flow fractionation. J Chromatogr A. 2011;1218(27):4234–9.CrossRefGoogle Scholar
  32. 32.
    Laborda F, Bolea E, Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem. 2014;86(5):2270–8.CrossRefGoogle Scholar
  33. 33.
    Montaño MD, Badiei HR, Bazargan S, Ranville JF. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ Sci Nano. 2014;1:338–46.CrossRefGoogle Scholar
  34. 34.
    Montaño MD, Olesik JW, Barber AG, Challis K, Ranville JF. Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal Bioanal Chem. 2016;408:5053–74.CrossRefGoogle Scholar
  35. 35.
    Von der Kammer F, Baborowski M, Friese K. Field flow fractionation coupled to multi-angle laser light scattering detectors: applicability and analytical benefits for the analysis of environmental colloids. Anal Chim Acta. 2005;552:166–74.CrossRefGoogle Scholar
  36. 36.
    Tadjiki S. Field flow fractionation with single particle ICP-MS as online detector. 2016. Available at: http://www.agilent.com/cs/library/applications/5991-6515EN_v2.pdf. Accessed 28 Nov 2016.
  37. 37.
    Liu W, Jack R, Kutscher D, McSheehy-Ducos S (2015) Evaluation of field flow fractionation-ICP-MS and single particle-ICP-MS for nanoparticle characterization. Available at: http://nemc.us/docs/2015/presentations/Thu-Topics%20in%20Drinking%20Water-24.5-Jack.pdf. Accessed 28 Nov 2016
  38. 38.
    Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983.Google Scholar
  39. 39.
    Chen B, Beckett R. Development of SdFFF–ETAAS for characterizing soil and sediment colloids. Analyst. 2001;126:1588–93.CrossRefGoogle Scholar
  40. 40.
    Runyona JR, Ulmius M, Nilsson L. A perspective on the characterization of colloids and macromolecules using asymmetrical flow field flow fractionation. Colloids Surf A Physicochem Eng Asp. 2014;442:25–33.CrossRefGoogle Scholar
  41. 41.
    Pornwilard M-Ma, Siripinyanond A. Field flow fractionation with inductively coupled plasma mass spectrometry: past, present, and future. J Anal At Spectrom. 2014;29:1739–52.Google Scholar
  42. 42.
    Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Ratanathanawongs Williams SK. An overview on field flow fractionation techniques and their applications in the separation and characterization of polymer. Prog Polym Sci. 2009;34(4):351–68.CrossRefGoogle Scholar
  43. 43.
    Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, et al. Field flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta. 2009;635(2):132–43.CrossRefGoogle Scholar
  44. 44.
    Estelrich J, Quesada-Pérez M, Forcada J, Callejas-Fernández J. Introductory aspects of soft nanoparticles. In soft nanoparticles for biomedical applications. 2014;1–18.Google Scholar
  45. 45.
    Efsa, ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). Scientific opinion on the reevaluation of silver (E 174) as food additive. EFSA J. 2016;14(1):4364. doi:10.2903/j.efsa.2016.4364.CrossRefGoogle Scholar
  46. 46.
    Barahona F, O-Jimenez I, Geiss O, Gilliland D, Barrero-Moreno J. Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J Chromatogr A. 2016;1432:92–100.CrossRefGoogle Scholar
  47. 47.
    Regulation (EU) No 1169/2011. On the provision of food information to consumers. Off J Eur Union, L 3014/18. 2011.Google Scholar
  48. 48.
    Contado C, Mejia J, Lozano García O, Piret J-P, Dumortier E, Toussaint O, et al. Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation. Anal Bioanal Chem. 2016;408:271–86.CrossRefGoogle Scholar
  49. 49.
    Barahona F, Geiss O, Urbán P, O-Jimenez I, Gilliland D, Barrero-Moreno J. Simultaneous determination of size and quantification of silica nanoparticles by asymmetric flow field flow fractionation coupled to ICPMS using silica nanoparticles standards. Anal Chem. 2015;87:3039–47.CrossRefGoogle Scholar
  50. 50.
    Geiss O, Cascio C, Gilliland D, Franchini F, Barrero-Moreno J. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors. J Chromatogr A. 2013;1321:100–8.CrossRefGoogle Scholar
  51. 51.
    López-Heras I, Madrid Y, Cámara C. Prospects and difficulties inTiO2 nanoparticles analysis in cosmetic and food products using asymmetrical flow field flow fractionation hyphenated to inductively coupled plasma mass spectrometry. Talanta. 2014;124:71–8.CrossRefGoogle Scholar
  52. 52.
    Ramos K, Ramos L, Cámara C, Gómez-Gómez MM. Characterization and quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field flow fractionation coupled with inductively coupled plasma mass spectrometry. J Chromatogr A. 2014;1371:227–36.CrossRefGoogle Scholar
  53. 53.
    Contado C, Ravani L, Passarella M. Size characterization by sedimentation field flow fractionation of silica particles used as food additives. Anal Chim Acta. 2013;788:183–92.CrossRefGoogle Scholar
  54. 54.
    Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H. The potential of asymmetric flow field flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Anal Bioanal Chem. 2014;406:3919–27.CrossRefGoogle Scholar
  55. 55.
    Peters RJB, van Bemmel G, Herrera-Rivera Z, Helsper HPFG, Marvin HJP, Weigel S, et al. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem. 2014;62:6285–93.CrossRefGoogle Scholar
  56. 56.
    Grombe R, Charoud-Got J, Emteborg H, Linsinger TPJ, Seghers J, Wagner S, et al. Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem. 2014;406:3895–907.Google Scholar
  57. 57.
    Loeschner K, Navratilova J, Grombe R, Linsinger TPJ, Købler C, Mølhave K, et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015;181:78–84.CrossRefGoogle Scholar
  58. 58.
    Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405:8185–95.CrossRefGoogle Scholar
  59. 59.
    Linsinger TP, Chaudhry Q, Dehalu V, Delahaut P, Dudkiewicz A, Grombe R, et al. Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem. 2013;138(2/3):1959–66.CrossRefGoogle Scholar
  60. 60.
    Addo Ntim S, Thomas TA, Noonan GO. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nano-enabled food-contact substances. Food Addit Contam Part A. 2016;33(5):905–12.CrossRefGoogle Scholar
  61. 61.
    Bott J, Störmer A, Franz R. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Addit Contam Part A. 2014;31(10):1769–82.CrossRefGoogle Scholar
  62. 62.
    Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert US. Asymmetric flow field flow fractionation in the field of nanomedicine. Anal Chem. 2014;86:5201–10.CrossRefGoogle Scholar
  63. 63.
    Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P. Flow field- fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal. 2014;87:53–61.CrossRefGoogle Scholar
  64. 64.
    Contado C, Vighi E, Dalpiaz A, Leo E. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation. Anal Bioanal Chem. 2013;405(2-3):703–11.CrossRefGoogle Scholar
  65. 65.
    Puglia C, Bonina F, Rizza L, Cortesi R, Merlotti E, Drechsler M, et al. Evaluation of percutaneous absorption of naproxen from different liposomal formulations. J Pharm Sci. 2010;99(6):2819–29.CrossRefGoogle Scholar
  66. 66.
    Esposito E, Ravani L, Mariani P, Contado C, Drechsler M, Puglia C, et al. Curcumin containing monoolein aqueous dispersions: a preformulative study. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4923–34.CrossRefGoogle Scholar
  67. 67.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials. 2007;28(31):4717–32.CrossRefGoogle Scholar
  68. 68.
    Bera D, Qian L, Tseng T-K, Holloway PH. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4):2260–345.CrossRefGoogle Scholar
  69. 69.
    Kosmella S, Venus J, Hahn J, Prietzel C, Koetz J. Low-temperature synthesis of polyethyleneimine-entrapped CdS quantum dots. Chem Phys Lett. 2014;592:114–9.CrossRefGoogle Scholar
  70. 70.
    Tsai D-H, Cho TJ, Del Rio FW, Gorham JM, Zheng J, Tan J, et al. Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters. Langmuir. 2014;30:3397–405.CrossRefGoogle Scholar
  71. 71.
    Lemke K, Prietzel C, Koetz J. Fluorescent gold clusters synthesized in a poly(ethyleneimine) modified reverse micro-emulsion. J Colloid Interface Sci. 2013;394:141–6.CrossRefGoogle Scholar
  72. 72.
    Tsai D-H, Lu Y-F, Del Rio FW, Cho TJ, Guha S, Zachariah MR, et al. Orthogonal analysis of functional gold nanoparticles for biomedical applications. Anal Bioanal Chem. 2015;407:8411–22.CrossRefGoogle Scholar
  73. 73.
    Moquin A, Neibert KD, Maysinger D, Winnik FM. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field flow fractionation. Eur J Pharm Biopharm. 2015;89:290–9.CrossRefGoogle Scholar
  74. 74.
    Moquin A, Hutter E, Choi AO, Khatchadourian A, Castonguay A, Winnik FM, et al. Caspase-1 activity in microglia stimulated by pro-inflammagen nanocrystals. ACS Nano. 2013;7(11):9585–98.CrossRefGoogle Scholar
  75. 75.
    Menendez-Miranda M, Fernandez-Arguelles MT, Costa-Fernandez JM, Encinar JR, Sanz-Medel A. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field flow fractionation online coupled to fluorescence and inductively coupled plasma mass spectrometry. Anal Chim Acta. 2014;839:8–813.CrossRefGoogle Scholar
  76. 76.
    Krystek P, Kettler K, van der Wagt B, de Jong WH. Exploring influences on the cellular uptake of medium-sized silver nanoparticles into THP-1 cells. Microchem J. 2015;120:45–50.CrossRefGoogle Scholar
  77. 77.
    Menéndez-Miranda M, Encinar JR, Costa-Fernández JM, Sanz-Medel A. Asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency. J Chromatogr A. 2015;1422:247–52.CrossRefGoogle Scholar
  78. 78.
    Horie M, Kato H, Iwahashi H. Cellular effects of manufactured nanoparticles: effect of adsorption ability of nanoparticles. Arch Toxicol. 2013;87:771–81.CrossRefGoogle Scholar
  79. 79.
    Kim ST, Lee Y-J, Hwang Y-S, Lee S. Study on aggregation behavior of cytochrome c-conjugated silver nanoparticles using asymmetrical flow field flow fractionation. Talanta. 2015;132:939–44.CrossRefGoogle Scholar
  80. 80.
    Hansen M, Smith MC, Crist RM, Clogston JD, McNeil SE. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field flow fractionation. Anal Bioanal Chem. 2015;407:8661–72.CrossRefGoogle Scholar
  81. 81.
    Majewski AP, Stahlschmidt U, Jérôme V, Freitag R, Müller AHE, Schmalz H. PDMAEMA-grafted core−shell−corona particles for nonviral gene delivery and magnetic cell separation. Biomacromolecules. 2013;14:3081–90.CrossRefGoogle Scholar
  82. 82.
    Haladjova E, Rangelov S, Geisler M, Boye S, Lederer A, Mountrichas G, et al. Asymmetric flow field flow fractionation investigation of magnetopolyplexes. Macromol Chem Phys. 2015;216:1862–7.CrossRefGoogle Scholar
  83. 83.
    Löwa N, Knappe P, Wiekhorst F, Eberbeck D, Thünemann AF, Trahms L. Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging. J Magn Magn Mater. 2014;380:266–70.CrossRefGoogle Scholar
  84. 84.
    Ashby J, Schachermeyer S, Pan S, Zhong W. Dissociation-based screening of nanoparticle–protein interaction via flow field flow fractionation. Anal Chem. 2013;85:7494–501.CrossRefGoogle Scholar
  85. 85.
    Belete A, Maeder K. Novel aqueous nano-scaled formulations of oleic acid stabilized hydrophobic superparamagnetic iron oxide nanocrystals. Drug Dev Ind Pharm. 2013;39(2):186–96.CrossRefGoogle Scholar
  86. 86.
    Soshnikova YM, Roman SJ, Chebotareva NA, Baum OI, Obrezkova MV, Gillis RB, et al. Starch-modified magnetite nanoparticles for impregnation into cartilage. J Nanopart Res. 2013;15:2092–101.CrossRefGoogle Scholar
  87. 87.
    Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14:21266–305.CrossRefGoogle Scholar
  88. 88.
    Dou H, Kim B-J, Choi S-H, Jung EC, Lee S. Effect of size of Fe3O4 magnetic nanoparticles on electrochemical performance of screen printed electrode using sedimentation field flow fractionation. J Nanopart Res. 2014;16:2679–90.CrossRefGoogle Scholar
  89. 89.
    Zataray J, Aguirre A, de la Cal JC, Leiz JR. Polymerization of N-vinyl formamide in homogeneous and heterogeneous media and surfactant free emulsion polymerization of MMA using polyvinylamine as stabilizer. Macromol Symp. 2013;333:80–92.CrossRefGoogle Scholar
  90. 90.
    Ou C-W, Su C-H, Jeng U-S, S-h H. Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion. ACS Appl Mater Interfaces. 2014;6:5685–94.CrossRefGoogle Scholar
  91. 91.
    John C, Lange K. Asymmetrical flow field flow fractionation for human serum albumin based nanoparticle characterization and a deeper insight into particle formation processes. J Chromatogr A. 2014;1346:97–106.CrossRefGoogle Scholar
  92. 92.
    Engel A, Plöger M, Mulac D, Langer K. Asymmetric flow field flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing. Int J Pharm. 2014;461:137–44.CrossRefGoogle Scholar
  93. 93.
    Mathaes R, Winter G, Engert J, Besheer A. Application of different analytical methods for the characterization of nonspherical micro- and nanoparticles. Int J Pharm. 2013;453:620–9.CrossRefGoogle Scholar
  94. 94.
    Runyon JR, Goering A, Yong K-T, Ratanathanawongs Williams SK. Preparation of narrow dispersity gold nanorods by asymmetrical flow field flow fractionation and investigation of surface plasmon resonance. Anal Chem. 2013;85:940–8.CrossRefGoogle Scholar
  95. 95.
    Loeschner K, Harrington CF, Kearney J-L, Langton DJ, Larsen EH. Feasibility of asymmetric flow field flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients. Anal Bioanal Chem. 2015;407:4541–54.CrossRefGoogle Scholar
  96. 96.
    Baalousha M, Stolpe B, Lead JR. Flow field–flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A. 2011;1218(27):4078–103.CrossRefGoogle Scholar
  97. 97.
    Regelink IC, Weng L, Koopmans GF, van Riemsdijk WH. Asymmetric flow field–flow fractionation as a new approach to analyze iron-(hydr)oxide nanoparticles in soil extracts. Geoderma. 2013;202–203:134–41.CrossRefGoogle Scholar
  98. 98.
    Regelink IC, Voegelin A, Weng L, Koopmans GF, Comans RNJ. Characterization of colloidal Fe from soils using field flow fractionation and Fe K-edge X-ray absorption spectroscopy. Environ Sci Technol. 2014;48:4307–16.CrossRefGoogle Scholar
  99. 99.
    Neubauer E, Schenkeveld WDC, Plathe KL, Rentenberger C, von der Kammer F, Kraemer SM, et al. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter and iron mineral nanoparticles. Sci Total Environ. 2013;461(462):108–16.CrossRefGoogle Scholar
  100. 100.
    Lapworth DJ, Stolpe B, Williams PJ, Gooddy DC, Lead JR. Characterization of suboxic groundwater colloids using a multimethod approach. Environ Sci Technol. 2013;47:2554–61.CrossRefGoogle Scholar
  101. 101.
    Plathe KL, von der Kammer F, Hassellov M, Moore JN, Murayama M, Hofmann T, et al. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochim Cosmochim Acta. 2013;102:213–25.CrossRefGoogle Scholar
  102. 102.
    Serrano S, Gomez-Gonzalez MA, O’Day PA, Laborda F, Bolea E, Garrido F. Arsenic speciation in the dispersible colloidal fraction of soils from a mine-impacted creek. J Hazard Mater. 2015;286:30–40.CrossRefGoogle Scholar
  103. 103.
    Neubauer E, von der Kammer F, Knorr K-H, Peiffer S, Reichert M, Hofmann T. Colloid-associated export of arsenic in stream water during stormflow events. Chem Geol. 2013;352:81–91.CrossRefGoogle Scholar
  104. 104.
    Neubauer E, von der Kammer F, Hofmann T. Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff. Water Res. 2013;47:2757–69.CrossRefGoogle Scholar
  105. 105.
    Baken S, Regelink IC, Comans RNJ, Smolders E, Koopmans GF. Iron-rich colloids as carriers of phosphorus in streams: a field-flow fractionation study. Water Res. 2016;99:83–90.CrossRefGoogle Scholar
  106. 106.
    Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, Kyong Shon H. Assessing the aggregation behavior of iron oxide nanoparticles under relevant environ mental conditions using a multi-method approach. Water Res. 2013;47:4585–99.CrossRefGoogle Scholar
  107. 107.
    Chekli L, Phuntsho S, Roy M, Kyong Shon H. Characterization of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter. Sci Total Environ. 2013;461–462:19–27.CrossRefGoogle Scholar
  108. 108.
    Mudalige TK, Qu H, Linder SW. Asymmetric flow-field flow fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation: application for nanoparticles with a protein corona. Anal Chem. 2015;87:7395–401.CrossRefGoogle Scholar
  109. 109.
    Meisterjahn B, Neubauer E, Von der Kammer F, Hennecke D, Hofmann T. Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J Chromatogr A. 2014;1372:204–11.CrossRefGoogle Scholar
  110. 110.
    Gigault J, Hackley VA. Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry. Anal Chim Acta. 2013;763:57–66.CrossRefGoogle Scholar
  111. 111.
    Krystek P, Bäuerlein PS, Kooij PJF. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water. J Pharm Biomed Anal. 2015;106:116–23.CrossRefGoogle Scholar
  112. 112.
    Antonio DC, Cascio C, Jaksic Z, Jurasin D, Lyons DM, Nogueira AJA, et al. Assessing silver nanoparticles behavior in artificial seawater by mean of AF4 and spICP-MS. Mar Environ Res. 2015;111:162–9.CrossRefGoogle Scholar
  113. 113.
    Chekli L, Roy M, Tijing LD, Donner E, Lombi E, Shon HK. Agglomeration behavior of titanium dioxide nanoparticles in river waters: a multi-method approach combining light scattering and field-flow fractionation techniques. J Environ Manag. 2015;159:135–42.CrossRefGoogle Scholar
  114. 114.
    Koopmans GF, Hiemstra T, Regelink IC, Molleman B, Comans RNJ. Asymmetric flow field flow fractionation of manufactured silver nanoparticles spiked into soil solution. J Chromatogr A. 2015;1392:100–9.CrossRefGoogle Scholar
  115. 115.
    Poda AR, Kennedy AJ, Cuddy MF, Bednar AJ. Investigations of UV photolysis of PVP-capped silver nanoparticles in the presence and absence of dissolved organic carbon. J Nanopart Res. 2013;15:1673–82.CrossRefGoogle Scholar
  116. 116.
    Harmon AR, Kennedy AJ, Poda AR, Bednar AJ, Chappell MA, Steevens JA. Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium. Environ Toxicol Chem. 2014;33(8):1783–91.CrossRefGoogle Scholar
  117. 117.
    Krystek P, Brandsma S, Leonards P, Boer J. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna. Talanta. 2016;147:289–95.CrossRefGoogle Scholar
  118. 118.
    Coleman JG, Kennedy AJ, Bednar AJ, Ranville JF, Laird JG, Harmon AR, et al. Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegates. Environ Toxicol Chem. 2013;32(9):2069–77.CrossRefGoogle Scholar
  119. 119.
    Carew AC, Hoque ME, Metcalfe CD, Peyrot C, Wilkinson KJ, Helbing CC. Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis. Aquat Toxicol. 2015;159:99–108.CrossRefGoogle Scholar
  120. 120.
    Dou H, Jung EC, Lee S. Factors affecting measurement of channel thickness in asymmetrical flow field flow fractionation. J Chromatogr A. 2015;1393:115–21.CrossRefGoogle Scholar
  121. 121.
    Meisterjahn B, Wagner S, von der Kammer F, Hennecke D, Hofmann T. Silver and gold nanoparticle separation using asymmetrical flow field flow fractionation: influence of run conditions and of particle and membrane charges. J Chromatogr A. 2016;1440:150–9.CrossRefGoogle Scholar
  122. 122.
    Sánchez-García L, Bolea E, Laborda F, Cubel C, Ferrer P, Gianolio D, et al. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry. J Chromatogr A. 2016;1438(18):205–15.CrossRefGoogle Scholar
  123. 123.
    Gigault J, Hackley VA. Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation. Anal Bioanal Chem. 2013;405:6251–8.CrossRefGoogle Scholar
  124. 124.
    Gigault J, Nguyen TM, Pettibone JM, Hackley VA. Accurate determination of the size distribution for polydisperse, cationic metallic nanomaterials by asymmetric-flow field flow fractionation. J Nanopart Res. 2014;16:2735–44.CrossRefGoogle Scholar
  125. 125.
    Noskova S, Scherera C, Maskos M. Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field flow fractionation. J Chromatogr A. 2013;1274:151–8.CrossRefGoogle Scholar
  126. 126.
    Bendixen N, Losert S, Adlhart C, Lattuad M, Ulrich A. Membrane–particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. J Chromatogr A. 2014;1334:92–100.CrossRefGoogle Scholar
  127. 127.
    Schachermeyer S, Ashby J, Kwon M, Zhong W. Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation. J Chromatogr A. 2012;1264:72–9.CrossRefGoogle Scholar
  128. 128.
    Mudalige TK, Qu H, Sánchez-Pomales G, Sisco PN, Linder SW. Simple functionalization strategies for enhancing nanoparticle separation and recovery with asymmetric flow field flow fractionation. Anal Chem. 2015;87:1764–72.CrossRefGoogle Scholar
  129. 129.
    Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Koch CB, et al. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(7):2461–8.CrossRefGoogle Scholar
  130. 130.
    Nischwitz V, Goenaga-Infante H. Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on- line with inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2012;27(1):1084–92.CrossRefGoogle Scholar
  131. 131.
    Bartczak D, Vincent P, Goenaga-Infante H. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques. Anal Chem. 2015;87:5482–5.CrossRefGoogle Scholar
  132. 132.
    Herrero P, Bäuerlein PS, Emke E, Pocurull E, de Voogt P. Asymmetrical flow field-flow fractionation hyphenated to Orbitrap high resolution mass spectrometry for the determination of (functionalized) aqueous fullerene aggregates. J Chromatogr A. 2014;1356:277–82.CrossRefGoogle Scholar
  133. 133.
    Astefanei A, Kok WT, Bäuerlein P, Núnez O, Galceran MT, de Voogt P, et al. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. J Chromatogr A. 2015;1408:197–206.CrossRefGoogle Scholar
  134. 134.
    Reschiglian P, Roda B, Zattoni A, Min BR, Moon MH. High performance, disposable hollow fiber flow field flow fractionation for bacteria and cells. First application to deactivated Vibrio cholerae. J Sep Sci. 2002;25:490–8.CrossRefGoogle Scholar
  135. 135.
    Saenmuangchin R, Mettakoonpitak J, Shiowatana J, Siripinyanond A. Separation of silver nanoparticles by hollow fiber flow field flow fractionation: addition of tannic acid into carrier liquid as a modifier. J Chromatogr A. 2015;1415:115–22.CrossRefGoogle Scholar
  136. 136.
    Tasci TO, Johnson WP, Fernandez DP, Manangon E, Gale BK. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles. Anal Chem. 2013;85:11225–32.CrossRefGoogle Scholar
  137. 137.
    Tasci TO, Johnson WP, Fernandez DP, Manangon E, Gale BK. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles. J Chromatogr A. 2014;1365:164–72.CrossRefGoogle Scholar
  138. 138.
    Johann C, Elsenberg S, Schuch H, Rösch U. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field flow fractionation. Anal Chem. 2015;87:4292–8.CrossRefGoogle Scholar
  139. 139.
    Janča J. Microthermal field-flow fractionation: analysis of synthetic, natural, and biological macromolecules and particles. New York: HNB Publishing; 2008.Google Scholar
  140. 140.
    Janča J. Characterization of diamond nanoparticles by high-speed micro-thermal field-flow fractionation. Int J Polym Anal Charact. 2015;20:671–80.CrossRefGoogle Scholar
  141. 141.
    Müller D, Cattaneo S, Meier F, Welz R, de Mello AJ. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge. Front Chem. 2015. Available at: http://dx.doi.org/10.3389/fchem.2015.00045. Accessed 8 Dec 2016.
  142. 142.
    Contado C, Hoyos M. SPLITT cell analytical separation of silica particles. Non-specific crossover effects: does the shear-induced diffusion play a role? Chromatographia. 2007;65(7):453–62.CrossRefGoogle Scholar
  143. 143.
    Camerani MC, Steenari BM, Sharma R, Beckett R. Cd speciation in biomass fly ash particles after size separation by centrifugal SPLITT. Fuel. 2002;81(13):1739–53.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Chemical and Pharmaceutical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations