Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry


Different highly selective sorbents have been evaluated for the treatment of food and biological samples to determine chloramphenicol residues by ion mobility spectrometry (IMS). Combination of a selective solid-phase extraction (SPE) and dispersive liquid-liquid microextraction allowed a highly sensitive determination of chloramphenicol in water, milk, honey, and urine samples. The performance of selective SPE supports such as immunoaffinity chromatography (IAC) and molecular imprinted polymers (MIP) have been compared in terms of selectivity, sensitivity, trueness, precision, and reusability. Quantitative recoveries were obtained for chloramphenicol residues, ranging from 91 to 123 % for water, from 99 to 120 % for skimmed milk, and from 95 to 124 % for urine using IAC-IMS and MIP-IMS methods. Quantitative recoveries (from 88 to 104 %) were also achieved for honey samples using IAC-IMS, but low recoveries were obtained using MIP-IMS. The limit of quantification was set at 0.1 μg L−1 which is lower than the minimum required performance limit established by the EU. The proposed methodology is a simple and cost affordable alternative to chromatography methods for the highly sensitive and selective analysis of chloramphenicol residues in food and urine.

Scheme for chloramphenicol determination by selective solid-phase extraction and ion mobility spectrometry

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Eiceman GA. Ion-mobility spectrometry as a fast monitor of chemical composition. TrAC Trend Anal Chem. 2002;21:259–75.

    CAS  Article  Google Scholar 

  2. 2.

    Armenta S, Alcala M, Blanco M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal Chim Acta. 2011;703:114–23.

    CAS  Article  Google Scholar 

  3. 3.

    Harrington PD, Reese ES, Rauch PJ, Hu LJ, Davis DM. Interactive self-modeling mixture analysis of ion mobility spectra. Appl Spectrosc. 1997;51:808–16.

    CAS  Article  Google Scholar 

  4. 4.

    Asbury GR, Hill HH. Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. J Microcolumn. 2000;12:172–8.

    CAS  Article  Google Scholar 

  5. 5.

    Zamora D, Blanco M. Improving the efficiency of ion mobility spectrometry analyses by using multivariate calibration. Anal Chim Acta. 2012;726:50–6.

    CAS  Article  Google Scholar 

  6. 6.

    Armenta S, Blanco M. Pros and cons of benzodiazepines screening in human saliva by ion mobility spectrometry. Anal Bioanal Chem. 2011;401:1935–48.

    CAS  Article  Google Scholar 

  7. 7.

    Soleimani M, Azam M, Azimi M, Borhani K. SPE-IMS as a new analysis technique for identification and quantification of metalaxyl residue in cucumber. Ital J Food Sci. 2012;24:3–8.

    CAS  Google Scholar 

  8. 8.

    Holopainen S, Luukkonen V, Nousiainen M, Sillanpää M. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS). Talanta. 2013;114:176–82.

    CAS  Article  Google Scholar 

  9. 9.

    Kalhor H, Ameli A, Alizadeh N. Electrochemically controlled solid-phase micro-extraction of proline using a nanostructured film of polypyrrole, and its determination by ion mobility spectrometry. Microchim Acta. 2013;180:783–9.

    CAS  Article  Google Scholar 

  10. 10.

    Lokhnauth JK, Snow NH. Stir-bar sorptive extraction and thermal desorption-ion mobility spectrometry for the determination of trinitrotoluene and l,3,5-trinitro-l,3,5-triazine in water samples. J Chromatogr A. 2006;1105:33–8.

    CAS  Article  Google Scholar 

  11. 11.

    Armenta S, Garrigues S, de la Guardia M, Brassier J, Alcalà M, Blanco M. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid–liquid extraction. J Chromatogr A. 2015;1384:1–8.

    CAS  Article  Google Scholar 

  12. 12.

    Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M. Determination of 2,4,6-tricholoroanisole in water and wine samples by ionic liquid-based single-drop microextraction and ion mobility spectrometry. Anal Chim Acta. 2011;702:199–204.

    Article  Google Scholar 

  13. 13.

    Saraji M, Jafari MT, Sherafatmand H. Hollow fiber-based liquid–liquid–liquid microextraction combined with electrospray ionization-ion mobility spectrometry for the determination of pentazocine in biological samples. J Chromatogr A. 2010;1217:5173–8.

    CAS  Article  Google Scholar 

  14. 14.

    Holopainen S, Nousiainen M, Sillanpää MET, Anttalainen O. Sample-extraction methods for ion-mobility spectrometry in water analysis. TrAC Trend Anal Chem. 2012;37:124–34.

    CAS  Article  Google Scholar 

  15. 15.

    Khalesi M, Sheikh-Zeinoddin M, Tabrizchi M. Determination of ochratoxin A in licorice root using inverse ion mobility spectrometry. Talanta. 2011;83:988–93.

    CAS  Article  Google Scholar 

  16. 16.

    Sheibani A, Tabrizchi M, Ghaziaskar HS. Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta. 2008;75:233–8.

    CAS  Google Scholar 

  17. 17.

    Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA. Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: a promising partnership. J Chromatogr A. 2015;1426:110–7.

    CAS  Article  Google Scholar 

  18. 18.

    Jafari MT, Rezaei B, Zaker B. Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples. Anal Chem. 2009;81:3585–91.

    CAS  Article  Google Scholar 

  19. 19.

    Rezaei B, Jafari MT, Khademi R. Selective separation and determination of primidone in pharmaceutical and human serum samples using molecular imprinted polymer-electrospray ionization ion mobility spectrometry (MIP-ESI-IMS). Talanta. 2009;79:669–75.

    CAS  Article  Google Scholar 

  20. 20.

    Jafari MT, Badihi Z, Jazan E. A new approach to determine salicylic acid in human urine and blood plasma based on negative electrospray ion mobility spectrometry after selective separation using a molecular imprinted polymer. Talanta. 2012;99:520–6.

    CAS  Article  Google Scholar 

  21. 21.

    Jafari MT, Kamfirozi M, Jazan E, Ghoreishi SM. Selective extraction and analysis of pioglitazone in cow plasma using a molecularly imprinted polymer combined with ESI ion mobility spectrometry. J Sep Sci. 2014;37:573–9.

    CAS  Article  Google Scholar 

  22. 22.

    Lu W, Li H, Meng Z, Liang X, Xue M, Wang Q, et al. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers. J Hazard Mat. 2014;280:588–94.

    CAS  Article  Google Scholar 

  23. 23.

    European Food Safety Authority. Scientific opinion on chloramphenicol in food and feed. EFSA J. 2014;12–3907:1–145.

    Google Scholar 

  24. 24.

    Food and Agriculture Organization of the United Nations/World Health Organization. Summary report of the sixty-second meeting of JECFA. FAO Food Nutrit Papers. 2004;41–6:1–12.

    Google Scholar 

  25. 25.

    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    CAS  Article  Google Scholar 

  26. 26.

    Esteve-Turrillas FA, Mercader JV, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Development of immunoaffinity columns for pyraclostrobin extraction from fruit juices and analysis by liquid chromatography with UV detection. J Chromatogr A. 2011;1218:4902–9.

    CAS  Article  Google Scholar 

  27. 27.

    West C, Baron G, Minet J. Detection of gunpowder stabilizers with ion mobility spectrometry. J Forensic Sci Int. 2007;166:91–101.

    CAS  Article  Google Scholar 

  28. 28.

    Jafari MT, Khayamian T, Shaer V, Zarei N. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Anal Chim Acta. 2007;581:147–53.

    CAS  Article  Google Scholar 

  29. 29.

    Picó Y. Food contaminants and residue analysis. Elsevier ISBN: 978-0-444-53019-6; 2008.

  30. 30.

    Esteve-Turrillas FA, Abad-Somovilla A, Quiñones-Reyes G, Agulló C, Mercader JV, Abad-Fuentes A. Monoclonal antibody-based immunoassays for cyprodinil residue analysis in QuEChERS-based fruit extracts. Food Chem. 2015;187:530–6.

    CAS  Article  Google Scholar 

Download references


Authors gratefully acknowledge the financial support of the Ministerio de Economía y Competitividad (AGL2012-39965-C02-01-02/ALI, CTQ-2012-38635, and CTQ-2014-52841) and Generalitat Valenciana (PROMETEO-II 2014-077).

Author information



Corresponding author

Correspondence to Francesc A. Esteve-Turrillas.

Ethics declarations

This study has been approved by the appropriate ethics committee and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare no competing financial or nonfinancial interest.

Additional information

These results were presented as a poster communication at the “XXV Reunión Nacional de Espectroscopía—VIII Congreso Ibérico de Espectroscopía” (XXV RNE-VIII CIE) held in Alicante (Spain) in July 2016 and it won the Poster Prize for excellent presentation of particularly significant innovative analytical research.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 346 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armenta, S., de la Guardia, M., Abad-Fuentes, A. et al. Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry. Anal Bioanal Chem 408, 8559–8567 (2016). https://doi.org/10.1007/s00216-016-9995-9

Download citation


  • Chloramphenicol
  • Ion mobility spectrometry
  • Immunoaffinity chromatography
  • Molecular imprinted polymer
  • Solid-phase extraction