Skip to main content

Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

Abstract

The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles <400 μm was investigated by Raman imaging and FTIR transmission imaging. The results were compared regarding number, size and type of detectable microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range <20 μm. However, the measurement time of Raman imaging is considerably higher compared to FTIR imaging. In summary, we propose a further size division within the smaller microplastics fraction into 500–50 μm (rapid and reliable analysis by FTIR imaging) and into 50–1 μm (detailed and more time-consuming analysis by Raman imaging).

Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62:1596–605.

    CAS  Article  Google Scholar 

  2. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 2012;46:3060–75.

    CAS  Article  Google Scholar 

  3. Ivar do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. Environ Pollut. 2014;185:352–64.

    CAS  Article  Google Scholar 

  4. Dris R, Imhof HK, Sanchez W, Gasperi J, Galgani F, Tassin B, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environ Chem. 2015;12:539–50.

    CAS  Article  Google Scholar 

  5. Colton JB, Knapp FD, Burns BR. Plastic particles in surface waters of the Northwestern Atlantic. Science. 1974;185:491–7.

    Article  Google Scholar 

  6. Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, Peck BB. Polystyrene spherules in coastal waters. Science. 1972;178:749–50.

    CAS  Article  Google Scholar 

  7. Carpenter EJ, Smith KL. Plastics on the Sargasso sea surface. Science. 1972;175:1240–1.

    CAS  Article  Google Scholar 

  8. Frias JPGL, Otero V, Sobral P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res. 2014;95:89–95.

    CAS  Article  Google Scholar 

  9. Isobe A, Uchida K, Tokai T, Iwasaki S. East Asian seas: a hot spot of pelagic microplastics. Mar Pollut Bull. 2015;101:618–23.

    CAS  Article  Google Scholar 

  10. Morét-Ferguson S, Law KL, Proskurowski G, Murphy EK, Peacock EE, Reddy CM. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar Pollut Bull. 2010;60:1873–8.

    Article  Google Scholar 

  11. Song YK, Hong SH, Jang M, Kang J-H, Kwon OY, Han GM, et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol. 2014;48:9014–21.

    CAS  Article  Google Scholar 

  12. Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 2015;100:70–81.

    CAS  Article  Google Scholar 

  13. Lattin GL, Moore CJ, Zellers AF, Moore SL, Weisberg SB. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar Pollut Bull. 2004;49:291–4.

    CAS  Article  Google Scholar 

  14. Doyle MJ, Watson W, Bowlin NM, Sheavly SB. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar Environ Res. 2011;71:41–52.

    CAS  Article  Google Scholar 

  15. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol. 2011;45:9175–9.

    CAS  Article  Google Scholar 

  16. Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR. New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull. 2013;70:227–33.

    CAS  Article  Google Scholar 

  17. Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.

    CAS  Article  Google Scholar 

  18. Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR. Microplastic pollution in deep-sea sediments. Environ Pollut. 2013;182:495–9.

    Article  Google Scholar 

  19. Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2014;2:315–20.

    Article  Google Scholar 

  20. Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull. 2014;85:156–63.

    CAS  Article  Google Scholar 

  21. Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull. 2013;77:177–82.

    CAS  Article  Google Scholar 

  22. Zbyszewski M, Corcoran PL. Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut. 2011;220:365–72.

    CAS  Article  Google Scholar 

  23. Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C. Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol. 2013;23:R867–8.

    CAS  Article  Google Scholar 

  24. Lechner A, Keckeis H, Lumesberger-Loisl F, Zens B, Krusch R, Tritthart M, et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut. 2014;188:177–81.

    CAS  Article  Google Scholar 

  25. Gasperi J, Dris R, Bonin T, Rocher V, Tassin B. Assessment of floating plastic debris in surface water along the Seine River. Environ Pollut. 2014;195:163–6.

    CAS  Article  Google Scholar 

  26. Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol. 2015;49:6070–6.

    CAS  Article  Google Scholar 

  27. Besseling E, Foekema EM, Van Franeker JA, Leopold MF, Kühn S, Bravo Rebolledo EL, et al. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar Pollut Bull. 2015;95:248–52.

    CAS  Article  Google Scholar 

  28. Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler EM, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102:134–41.

    CAS  Article  Google Scholar 

  29. Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70.

    Article  Google Scholar 

  30. Neves D, Sobral P, Ferreira JL, Pereira T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull. 2015;101:119–26.

    CAS  Article  Google Scholar 

  31. Devriese LI, van der Meulen MD, Maes T, Bekaert K, Paul-Pont I, Frère L, et al. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull. 2015;98:179–87.

    CAS  Article  Google Scholar 

  32. De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, et al. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar Pollut Bull. 2014;85:146–55.

    Article  Google Scholar 

  33. Vandermeersch G, Van Cauwenberghe L, Janssen CR, Marques A, Granby K, Fait G, et al. A critical view on microplastic quantification in aquatic organisms. Environ Res. 2015;143:46–55.

    CAS  Article  Google Scholar 

  34. Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015;49:13622–7.

    CAS  Article  Google Scholar 

  35. Galgani F, Hanke G, Werner S, Oosterbaan L, Nilsson P, Fleet D, et al. Guidance on monitoring of marine litter in European seas. JRC Scientific and Policy Reports. 2013;1–128.

  36. Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, et al. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur. 2014;26:12.

    Article  Google Scholar 

  37. Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR. Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res. 2015;111:5–17.

    Article  Google Scholar 

  38. Liebezeit G, Dubaish F. Microplastics in beaches of the East Frisian islands Spiekeroog and Kachelotplate. Bull Environ Contam Toxicol. 2012;89:213–7.

    CAS  Article  Google Scholar 

  39. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91.

    CAS  Article  Google Scholar 

  40. Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93:202–9.

    CAS  Article  Google Scholar 

  41. Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 2013;15:1949–56.

    CAS  Article  Google Scholar 

  42. Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7.

    Article  Google Scholar 

  43. Hintersteiner I, Himmelsbach M, Buchberger WW. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography. Anal Bioanal Chem. 2015;407:1253–9.

    CAS  Article  Google Scholar 

  44. Everall NJ, Chalmer JM, Griffiths PR. Vibrational spectroscopy of polymers: principles and practice. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  45. Koenig JL. Spectroscopy of polymers, ACS Professional Reference Book. Washington, DC: American Chemical Society; 1992.

    Google Scholar 

  46. Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74.

    CAS  Article  Google Scholar 

  47. Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. FPA-based micro-FTIR imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12:563–581.

  48. Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87:6032–40.

    CAS  Article  Google Scholar 

  49. Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, et al. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal Bioanal Chem. 2015;407:6791–801.

    Article  Google Scholar 

  50. Fischer D, Käppler A, Eichhorn K-J. Identification of microplastics in the marine environment by Raman microspectroscopy and imaging. Am Lab. 2015;47:32–4.

    Google Scholar 

  51. Horiba Jobin Yvon, Palaiseau. Raman ParticleFinder—automated particle location and Raman analysis with LabSpec 6. 2012. http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/SO-TN05_-_ParticleFinder_with_LabSpec6.pdf. Accessed 4 Jul 2016.

  52. rap.ID particle systems GmbH, Berlin. Single particle explorer. http://www.rap-id.com/media/files/SPE_raman_LIBS_ENG_web.pdf. Accessed 4 Jul 2016.

  53. Robertson I. Detection and identification of microplastic particles in cosmetic formulations using IR microscopy. PerkinElmer, Waltham. 2015. http://www.perkinelmer.de/lab-solutions/resources/docs/APP_Detection-Identification-Microplastic-Particles-Cosmetics-012079_01.pdf. Accessed 5 Jul 2016.

  54. Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic. Limnol Oceanogr Methods. 2012;10:524–37.

    CAS  Article  Google Scholar 

  55. Mark JE. Polymer data handbook. Oxford: Oxford University Press; 1999.

    Google Scholar 

  56. Balachandran U, Eror NG. Raman spectra of titanium dioxide. J Solid State Chem. 1982;42:276–82.

    CAS  Article  Google Scholar 

  57. Gall MJ, Hendra PJ, Peacock CJ, Cudby MEA, Willis HA. The laser-Raman spectrum of polyethylene. The assignment of the spectrum to fundamental modes of vibration. Spectrochim Acta. 1972;28:1485–96.

    CAS  Article  Google Scholar 

  58. Schulte F, Brzezinka K-W, Lutzenberger K, Stege H, Panne U. Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J Raman Spectrosc. 2008;39:1455–63.

    CAS  Article  Google Scholar 

  59. Stromberg RR, Straus S, Achhammer BG. Infrared spectra of thermally degraded poly(vinyl-chloride). J Res Natl Bur Stand. 1958;60:147–52.

    CAS  Article  Google Scholar 

  60. Siesler HW, Salzer R. Infrared and Raman spectroscopic imaging. Wiley: Weinheim; 2009.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Leonie Buschbeck (University Rostock) and Rica Wegner (Leibniz-Institut für Ostseeforschung Warnemünde (IOW)) for their support during sampling, sample extraction and purification. Special thanks to Falk Pollehne (IOW) for providing sediment trap samples. We also thank Julia Muche (Leibniz-Institut für Polymerforschung Dresden (IPF)) for technical assistance during Raman measurements and Dr. Cordelia Zimmerer (IPF) for helpful discussion regarding FTIR imaging. We are grateful to the Leibniz Association for financial support of the SAW project ‘MikrOMIK’ (SAW-2014-IOW-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Käppler or Klaus-Jochen Eichhorn.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Käppler, A., Fischer, D., Oberbeckmann, S. et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?. Anal Bioanal Chem 408, 8377–8391 (2016). https://doi.org/10.1007/s00216-016-9956-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9956-3

Keywords

  • Microplastics
  • Raman spectroscopy
  • FTIR spectroscopy
  • Environmental