Skip to main content

Advertisement

Log in

Rapid microfluidic analysis of a Y-STR multiplex for screening of forensic samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a rapid analysis procedure for use with a small set of rapidly mutating Y chromosomal short tandem repeat (Y-STR) loci that combines both rapid polymerase chain reaction (PCR) and microfluidic separation elements. The procedure involves a high-speed polymerase and a rapid cycling protocol to permit PCR amplification in 16 min. The resultant amplified sample is next analysed using a short 1.8-cm microfluidic electrophoresis system that permits a four-locus Y-STR genotype to be produced in 80 s. The entire procedure takes less than 25 min from sample collection to result. This paper describes the rapid amplification protocol as well as studies of the reproducibility and sensitivity of the procedure and its optimisation. The amplification process utilises a small high-speed thermocycler, microfluidic device and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The four loci used for the multiplex were selected due to their rapid mutation rates and should proved useful in preliminary screening of samples and suspects. Overall, this technique provides a method for rapid sample screening of suspect and crime scene samples in forensic casework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FTA® :

Fast technology for analysis of nucleic acids

RFU:

Relative fluorescence units

References

  1. Giese H, Lam R, Selden R, Tan E. Fast multiplexed polymerase chain reaction for conventional and microfluidic short tandem repeat analysis. J Forensic Sci. 2009;54(6):1287–96.

    Article  CAS  Google Scholar 

  2. Vallone PM, Hill CR, Butler JM. Demonstration of rapid multiplex PCR amplification involving 16 genetic loci. Forensic Sci Int Genet. 2008;3(1):42–5.

    Article  CAS  Google Scholar 

  3. Vallone PM, Hill CR, Podini D, Butler JM. Rapid amplification of commercial STR typing kits. Forensic Sci Int Genet Suppl Ser. 2009;2(1):111–2.

    Article  Google Scholar 

  4. Verheij S, Harteveld J, Sijen T. A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples. Forensic Sci Int Genet. 2012;6(2):167–75.

    Article  CAS  Google Scholar 

  5. Aboud M, Oh HH, McCord B. Rapid direct PCR for forensic genotyping in under 25 min. Electrophoresis. 2013;34(11):1539–47.

    Article  CAS  Google Scholar 

  6. Mapes AA, Kloosterman AD, Poot CJ, van Marion V. Objective data on DNA success rates can aid the selection process of crime samples for analysis by rapid mobile DNA technologies. Forensic Sci Int. 2016;264:28–33.

    Article  CAS  Google Scholar 

  7. Redd AJ, Agellon AB, Kearney VA, Contreras VA, Karafet T, Park H, et al. Forensic value of 14 novel STRs on the human Y chromosome. Forensic Sci Int. 2002;130(2):97–111.

    Article  CAS  Google Scholar 

  8. Ravid-Amir O, Rosset S. Maximum likelihood estimation of locus-specific mutation rates in Y-chromosome short tandem repeats. Bioinformatics. 2010;26(18):i440–5.

    Article  CAS  Google Scholar 

  9. Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2009;109(6):365.

    Article  Google Scholar 

  10. Leclercq S, Rivals E, Jarne P. DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach. Genome Biol Evol. 2010;2:325–35.

    Article  Google Scholar 

  11. Payseur BA, Jing P, Haasl RJ. A genomic portrait of human microsatellite variation. Mol Biol Evol. 2011;28(1):303–12.

    Article  CAS  Google Scholar 

  12. Kelkar YD, Eckert KA, Chiaromonte F, Makova KD. A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res. 2011;21(12):2038–48.

    Article  CAS  Google Scholar 

  13. Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A, et al. A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci Int Genet. 2012;6(2):208–18.

    Article  CAS  Google Scholar 

  14. Abuidrees AS, Alghafri RH, Hadi S. Rapid amplification of the RM-Yplex assay. Electrophoresis. 2016. doi:10.1002/elps.201500549.

    Google Scholar 

  15. Kim YT, Lee D, Heo HY, Sim JE, Woo KM, Kim DH, et al. Total integrated slidable and valveless solid phase extraction-polymerase chain reaction-capillary electrophoresis microdevice for mini Y chromosome short tandem repeat genotyping. Biosens Bioelectron. 2016;78:489–96.

    Article  CAS  Google Scholar 

  16. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37(5):e40.

    Article  Google Scholar 

  17. Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 2004;32(3):1197–207.

    Article  CAS  Google Scholar 

  18. Goedecke N, Mckenna B, El-Difrawy S, Carey L, Matsudaira P, Ehrlich D. A high-performance multilane microdevice system designed for the DNA forensics laboratory. Electrophoresis. 2004;25(10–11):1678–86.

    Article  CAS  Google Scholar 

  19. Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, et al. Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem. 2010;82(16):6991–9.

    Article  CAS  Google Scholar 

  20. Shi Y, Anderson RC. High-resolution single-stranded DNA analysis on 4.5 cm plastic electrophoretic microchannels. Electrophoresis. 2003;24(19–20):3371–7.

    Article  CAS  Google Scholar 

  21. Woolley AT, Lao K, Glazer AN, Mathies RA. Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem. 1998;70(4):684–8.

    Article  CAS  Google Scholar 

  22. Shi Y. DNA sequencing and multiplex STR analysis on plastic microfluidic devices. Electrophoresis. 2006;27(19):3703–11.

    Article  CAS  Google Scholar 

  23. Alghafri R, Goodwin W, Ralf A, Kayser M, Hadi S. A novel multiplex assay for simultaneously analysing 13 rapidly mutating Y-STRs. Forensic Sci Int Genet. 2015;17:91–8.

    Article  CAS  Google Scholar 

  24. Butler JM, Decker AE, Vallone PM, Kline MC. Allele frequencies for 27 Y-STR loci with U.S. Caucasian, African American, and Hispanic samples. Forensic Sci Int. 2006;156(2–3):250–60.

    Article  CAS  Google Scholar 

  25. Zhang X, Zhang W, Fan X. Genetic polymorphism of 15 Y chromosomal STR loci and haplotypes of Henan Han population. Hereditas. 2014;151(6):201–8.

    Article  Google Scholar 

  26. Aboud MJ, Gassmann M, McCord B. Ultrafast STR separations on short-channel microfluidic systems for forensic screening and genotyping. J Forensic Sci. 2015;60(5):1164–70.

    Article  Google Scholar 

  27. Hartzell B. Response of short tandem repeat systems to temperature and sizing methods. Forensic Sci Int. 2003;133(3):228–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Streck and Agilent Technologies for their technical assistance and support. We also thank Fabiana Taglia for technical assistance. The authors gratefully acknowledge the donation of equipment from the Agilent Technologies and Streck. This project was partially supported by Award No. 2015-IJ-CX-K038 of the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. Points of view in the document are those of the authors and do not necessarily represent the official view of the U.S. Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce McCord.

Ethics declarations

Sampling of individuals was done with their informed consent, via signed consent forms, and in accordance with the guidelines and regulations set in place by the FIU IRB board and approved under the reference number 101831.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson-Daw, G., Albani, P., Gassmann, M. et al. Rapid microfluidic analysis of a Y-STR multiplex for screening of forensic samples. Anal Bioanal Chem 409, 939–947 (2017). https://doi.org/10.1007/s00216-016-9950-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9950-9

Keywords

Navigation