Analytical and Bioanalytical Chemistry

, Volume 409, Issue 1, pp 63–80 | Cite as

Analytical approaches for the characterization and quantification of nanoparticles in food and beverages

  • Monica Mattarozzi
  • Michele Suman
  • Claudia Cascio
  • Davide Calestani
  • Stefan Weigel
  • Anna Undas
  • Ruud Peters


Estimating consumer exposure to nanomaterials (NMs) in food products and predicting their toxicological properties are necessary steps in the assessment of the risks of this technology. To this end, analytical methods have to be available to detect, characterize and quantify NMs in food and materials related to food, e.g. food packaging and biological samples following metabolization of food. The challenge for the analytical sciences is that the characterization of NMs requires chemical as well as physical information. This article offers a comprehensive analysis of methods available for the detection and characterization of NMs in food and related products. Special attention was paid to the crucial role of sample preparation methods since these have been partially neglected in the scientific literature so far. The currently available instrumental methods are grouped as fractionation, counting and ensemble methods, and their advantages and limitations are discussed. We conclude that much progress has been made over the last 5 years but that many challenges still exist. Future perspectives and priority research needs are pointed out.

Graphical Abstract

Two possible analytical strategies for the sizing and quantification of Nanoparticles: Asymmetric Flow Field-Flow Fractionation with multiple detectors (allows the determination of true size and mass-based particle size distribution); Single Particle Inductively Coupled Plasma Mass Spectrometry (allows the determination of a spherical equivalent diameter of the particle and a number-based particle size distribution)


Nanoparticles Nanomaterials Emerging contaminants Food Analytical methods Risk assessment 


  1. 1.
    European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Second regulatory review on nanomaterials; 2012.Google Scholar
  2. 2.
    Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Nanotechnologies in the food industry – recent developments, risks and regulation. Trends Food Sci Technol. 2012;24:30–46.CrossRefGoogle Scholar
  3. 3.
    European Commission. Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union. 2011;L275/38-L275/40.Google Scholar
  4. 4.
    Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A. 2008;25:795–821.CrossRefGoogle Scholar
  5. 5.
    Stamm H, Gibson N, Anklam E. Detection of nanomaterials in food and consumer products: bridging the gap from legislation to enforcement. Food Addit Contam Part A. 2012;29:1175–82.CrossRefGoogle Scholar
  6. 6.
    Blasco C, Picó Y. Determining nanomaterials in food. Trends Anal Chem. 2011;30:84–99.CrossRefGoogle Scholar
  7. 7.
    Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H, Aschberger K, Rauscher H, Amenta V, Arena M, Botelho Moniz F, Gottardo S, Mech A. Inventory of nanotechnology applications in the agricultural, feed and food sector. EFSA supporting publication 2014:EN-621. Accessed 1 Jan 2016.
  8. 8.
    Deleers M, Pathak Y, Thassu D. Nanoparticulate drug delivery systems. New York: Informa Healthcare; 2007. ISBN 9780849390739.Google Scholar
  9. 9.
    Des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.CrossRefGoogle Scholar
  10. 10.
    Guo P, Martin CR, Zhao Y, Ge J, Zare RN. General method for producing organic nanoparticles using nanoporous membranes. NANO Lett. 2010;10:2202–6.CrossRefGoogle Scholar
  11. 11.
    Livney YD. Milk proteins as vehicles for bio-actives. Curr Opinion Colloid Interface Sci. 2010;15:73–81.CrossRefGoogle Scholar
  12. 12.
    Namazi H, Fathi F, Heydari A. Nanoparticles based on modified polysaccharides. In: The delivery of nanoparticles. InTech; 2012. ISBN 978-953-51-0615-9. Available from: Accessed 1 Jan 2016.
  13. 13.
    Calzolai L, Gilliland D, Rossi F. Measuring nanoparticles size distribution in food and consumer products: a review. Food Addit Contam Part A. 2012;29:1183–93.CrossRefGoogle Scholar
  14. 14.
    Peters RJB, van Bemmel G, Herrera-Rivera Z, Helsper HPFG, Marvin HJP, Weigel S, et al. Characterization of titanium dioxide NPs in food products: analytical methods to define NPs. J Agric Food Chem. 2014;62:6285–93.CrossRefGoogle Scholar
  15. 15.
    Weir A, Westerhoff P, Fabricius L, von Goetz N. Titanium dioxide NPs in food and personal care products. Environ Sci Technol. 2012;46:2242–50.CrossRefGoogle Scholar
  16. 16.
    Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci. 2011;363:1–24.CrossRefGoogle Scholar
  17. 17.
    Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag + ions. PLoS One. 2015;10:e0144306.CrossRefGoogle Scholar
  18. 18.
    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.CrossRefGoogle Scholar
  19. 19.
    Siqueira MC, Coelho GF, de Moura MR, Bresolin JD, Hubinger SZ, Marconcini JM, et al. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. J Nanosci Nanotechnol. 2014;14:5512–7.CrossRefGoogle Scholar
  20. 20.
    Echegoyen Y, Nerín C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 2013;62:16–22.CrossRefGoogle Scholar
  21. 21.
    Bott J, Stormer A, Franz R. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Addit Contam Part A. 2014;31:1769–82.CrossRefGoogle Scholar
  22. 22.
    Mackevica A, Olsson ME, Hansen SF. Silver nanoparticle release from commercially available plastic food containers into food simulants. J Nanopart Res. 2016;18:article no. 5.Google Scholar
  23. 23.
    Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012;66:416–29.CrossRefGoogle Scholar
  24. 24.
    Peters RJB, Herrera Rivera Z, van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014;406:3875–85.Google Scholar
  25. 25.
    Xu J, Yang F, An X, Hu Q. Anticarcinogenic activity of selenium-enriched green tea extracts in vivo. J Agric Food Chem. 2007;55:5349–53.CrossRefGoogle Scholar
  26. 26.
    Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010;5:565–9.CrossRefGoogle Scholar
  27. 27.
    Sekhon BS. Food nanotechnology – an overview. Nanotechnol Sci Appl. 2010;3:1–15.Google Scholar
  28. 28.
    Purest Colloids. http// Accessed 1 Jan 2016.
  29. 29.
    Van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11:8.CrossRefGoogle Scholar
  30. 30.
    Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano. 2012;6:2441–51.CrossRefGoogle Scholar
  31. 31.
    House of Lord Science and Technology Committee. 1st Report of Session 2009–10 Nanotechnologies and Food Volume I; 2010.Google Scholar
  32. 32.
    Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol. 2015;77:64–73.CrossRefGoogle Scholar
  33. 33.
    FAO/WHO Expert Meeting on the Application of Nanotechnologies in the Food and Agriculture Sectors: Potential Food Safety Implications, Meeting Report 1-102, 2009 ( Accessed 25 Aug 2015.
  34. 34.
    Chaudhry Q, Aitken R, Scotter M, Blackburn J, Ross B, Boxall A, et al. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A. 2008;25:241–58.CrossRefGoogle Scholar
  35. 35.
    Friends of the Earth Australia. “Way too little”. (2014). Accessed 25 Aug 2015.
  36. 36.
    Lòpez-Serrano AL, Olivas RM, Landaluze JS, Nanoparticles CC. a global vision. characterization, separation and quantification methods. Potential environmental and health implications. Anal Methods. 2014;6:38–56.CrossRefGoogle Scholar
  37. 37.
    European Union. Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR): Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials; 2007.Google Scholar
  38. 38.
    Von der Kammer F, Lee Ferguson P, Holden PA, Masion A, Rogers KR, Klaine SJ, et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case study. Environ Toxicol Chem. 2012;31:32–49.CrossRefGoogle Scholar
  39. 39.
    Loeschner K, Navratilova J, Købler C, Mølhave S, Wagner S, von der Kammer F, et al. Detection and characterization of silver NPs in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405:8185–95.CrossRefGoogle Scholar
  40. 40.
    Linsinger TP, Chaudhry Q, Dehalu V, Delahaut P, Dudkiewicz A, Grombe R, et al. Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem. 2013;138:1959–66.CrossRefGoogle Scholar
  41. 41.
    Peters R, Helsper H, Weigel S. NanoLyse EU project. 2011. Nanoparticles in food: analytical methods for detection and characterisation. Deliverable D4.1a. Sampling of nanoparticles: Relation between sample size and sampling error. Accessed 1 Jan 2016.
  42. 42.
    Simonet BM, Valcárcel M. Monitoring NPs in the environment. Anal Bioanal Chem. 2009;393:17–21.CrossRefGoogle Scholar
  43. 43.
    Weinberg H, Galyean A, Leopold M. Evaluating engineered NPs in natural waters. Trends Anal Chem. 2011;30:72–83.CrossRefGoogle Scholar
  44. 44.
    Hassellöv M, Readman JW, Ranville JF, Tiede K. NPs analysis and characterization methodologies in environmental risk assessment of engineered NPs. Ecotoxicology. 2008;17:344–61.CrossRefGoogle Scholar
  45. 45.
    Wagner S, Legros S, Loeschner K, Liu J, Navratilova J, Grombe R, et al. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS. J Anal At Spectrom. 2015;30:1286–96.CrossRefGoogle Scholar
  46. 46.
    López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 NPs and assessment of their differential toxicity in four edible plant species. J Agric Food Chem. 2010;58:3689–93.CrossRefGoogle Scholar
  47. 47.
    Johnston BD, Scown TM, Moger J, Cumberland SA, Baalousha M, Linge K, et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol. 2010;44:1144–51.CrossRefGoogle Scholar
  48. 48.
    Shaw BJ, Ramsden CS, Turner A, Handy RD. A simplified method for determining titanium from TiO2 NPs in fish tissue with a concomitant multi-element analysis. Chemosphere. 2013;92:1136–44.CrossRefGoogle Scholar
  49. 49.
    Liu J, Pennell KG, Hurt RH. Kinetics and mechanisms of nano-silver oxysulfidation. Environ Sci Technol. 2011;45:7345–53.CrossRefGoogle Scholar
  50. 50.
    Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold NPs from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47:14315–23.CrossRefGoogle Scholar
  51. 51.
    Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Bender Koch C, et al. Quantitative characterization of gold NPs by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem. 2011;83:2461–8.CrossRefGoogle Scholar
  52. 52.
    Arslan Z, Ates M, McDuffy W, Agachan MS, Farah IO, Yu WW, et al. Probing metabolic stability of CdSe NPs: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe NPs. J Hazard Mater. 2011;192:192–9.Google Scholar
  53. 53.
    Beltrami D, Calestani D, Maffini M, Suman M, Melegari B, Zappettini A, et al. Development of a combined SEM and ICP-MS approach for the qualitative and quantitative analyses of metal nano and microparticles in food products. Anal Bioanal Chem. 2011;401:1401–9.CrossRefGoogle Scholar
  54. 54.
    Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V. Improved method to disperse NPs for in vitro and in vivo investigation of toxicity. Nanotoxicology. 2007;1:118–29.CrossRefGoogle Scholar
  55. 55.
    Lopez-Lorente AI, Simonet BM, Valcárcel M. Rapid analysis of gold nanoparticles in liver and river water samples. Analyst. 2012;137:3528–34.CrossRefGoogle Scholar
  56. 56.
    Lopez-Lorente AI, Valcárel M. The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. Trends Anal Chem. 2016;75:1–9.CrossRefGoogle Scholar
  57. 57.
    Ruiz-Palomero C, Soriano ML, Valcárcel M. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatography A. 2016;1428:352–8.CrossRefGoogle Scholar
  58. 58.
    Kowalczyk B, Lagzi I, Grzybowski BA. Nanoseparations: strategies for size and/or shape-selective purification of NPs. Curr Opin Coll Interface Sci. 2011;16:135–48.CrossRefGoogle Scholar
  59. 59.
    Ferreira da Silva B, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barceló D. Analytical chemistry of metallic NPs in natural environments. Trends Anal Chem. 2011;30:528–40.CrossRefGoogle Scholar
  60. 60.
    Morrison MA, Benoit G. Filtration artifacts caused by overloading membrane filters. Environ Sci Technol. 2001;35:3774–9.CrossRefGoogle Scholar
  61. 61.
    Chen JC, Li Q, Elimelech M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv Colloid Interface Sci. 2004;107:83–108.CrossRefGoogle Scholar
  62. 62.
    Bolea E, Laborda F, Castillo JR. Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS. Anal Chim Acta. 2010;661:206–14.CrossRefGoogle Scholar
  63. 63.
    Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica NPs in a food matrix. Anal Bioanal Chem. 2014;406:3919–27.CrossRefGoogle Scholar
  64. 64.
    Von der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T. Separation and characterization of NPs in complex food and environmental samples by field-flow fractionation. Trends Anal Chem. 2011;30:425–36.CrossRefGoogle Scholar
  65. 65.
    Dalwadi G, Benson HA, Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm Res. 2005;22:2152–62.CrossRefGoogle Scholar
  66. 66.
    Anders CB, Baker JD, Stahler AC, Williams AJ, Sisco JN, Trefry JC, et al. Tangential flow ultrafiltration: a “green” method for the size selection and concentration of colloidal silver nanoparticles. J Vis Exp. 2012;68:e4167.Google Scholar
  67. 67.
    Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, et al. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem. 2011;83:6875–82.CrossRefGoogle Scholar
  68. 68.
    Luykx DMAM, Peters RJB, van Ruth SM, Bouwmeester H. A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem. 2008;56:8231–47.CrossRefGoogle Scholar
  69. 69.
    Peters R, ten Dam G, Bouwmeester H, Helsper H, Allmaier G, von der Kammer F, et al. Identification and characterization of organic nanoparticles in food. TRAC-Trend Anal Chem. 2011;30:100–12.CrossRefGoogle Scholar
  70. 70.
    Helsper JPFG, Peters RJB, Brouwer L, Weigel S. Characterisation and quantification of liposome-type nanoparticles in a beverage matrix using hydrodynamic chromatography and MALDI–TOF mass spectrometry. Anal Bioanal Chem. 2013;405:1181–9.CrossRefGoogle Scholar
  71. 71.
    Lespes G, Gigault J. Hyphenated analytical techniques for multidimensional characterization of submicron particles: a review. Anal Chim Acta. 2011;692:26–41.CrossRefGoogle Scholar
  72. 72.
    Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V. Current and emerging technologies for the characterization of nanomaterials. Sustainable Chem Eng. 2014;2:1707–16.CrossRefGoogle Scholar
  73. 73.
    Cascio C, Gilliland D, Rossi F, Calzolai L, Contado C. Experimental evaluation of key methods to detect, size and quantify nanoparticulate silver. Anal Chem. 2014;86:12143–51.CrossRefGoogle Scholar
  74. 74.
    Cascio C, Geiss O, Franchini F, Ojea-Jimenez I, Rossi F, Gilliland D, et al. Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products. J Anal At Spectrom. 2015;30:1255–65.CrossRefGoogle Scholar
  75. 75.
    EFSA Scientific Committee. Scientific opinion – Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2011;9(5):2140.CrossRefGoogle Scholar
  76. 76.
    Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeestera H, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal At Spectrom. 2015;30:1274–85.CrossRefGoogle Scholar
  77. 77.
    Loeschner K, Navratilova J, Grombe R, Linsinger TPJ, Købler C, Mølhave K, et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015;181:78–84.CrossRefGoogle Scholar
  78. 78.
    Ramos K, Ramos L, Camara C, Gomez-Gomez MM. Characterization and quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry. J Chromatogr A. 2014;1371:227–36.CrossRefGoogle Scholar
  79. 79.
    Aureli F, D'Amato M, Raggi A, Cubadda F. Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection. J Anal At Spectrom. 2015;30:1266–73.CrossRefGoogle Scholar
  80. 80.
    Contado C, Ravani L, Passarella M. Size characterization by sedimentation field flow fractionation of silica particles used as food additives. Anal Chim Acta. 2013;788:183–92.CrossRefGoogle Scholar
  81. 81.
    Barahona F, Geiss O, Urbán P, Ojea-Jimenez I, Gilliland D, Barrero-Moreno J. Simultaneous determination of size and quantification of silica nanoparticles by asymmetric flow field-flow fractionation coupled to ICPMS using silica nanoparticles standards. Anal Chem. 2015;87:3039–47.CrossRefGoogle Scholar
  82. 82.
    Lopez-Heras I, Madrid Y, Cámara C. Prospects and difficulties in TiO2 nanoparticles in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry. Talanta. 2014;124:71–8.CrossRefGoogle Scholar
  83. 83.
    Pergantis SA, Jones-Lepp TL, Heithmar EM. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Anal Chem. 2012;84:6454–62.CrossRefGoogle Scholar
  84. 84.
    Brewer AK, Striegel AM. Characterizing the size, shape and compactness of a polydisperse prolate ellipsoidal particle via quadrupole-detector hydrodynamic chromatography. Analyst. 2011;136:515–9.CrossRefGoogle Scholar
  85. 85.
    Dekkers S, Krystek P, Peters RJ, Lankveld DP, Bokkers BG, van Hoeven-Arentzen PH, et al. Presence and risks of nanosilica in food products. Nanotoxicology. 2011;5:393–405.CrossRefGoogle Scholar
  86. 86.
    Klavons JA, Dintzis FR, Millard MM. Hydrodynamic chromatography of waxy maize starch. Cereal Chem. 1997;74:832–6.CrossRefGoogle Scholar
  87. 87.
    Verleysen E, Van Doren E, Waegeneers N, De Temmerman PJ, Abi Daoud Francisco M, Mast J. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J Agric Food Chem. 2015;63:3570–8.CrossRefGoogle Scholar
  88. 88.
    Bao D, Oh ZG, Chen Z. Characterization of silver nanoparticles internalized by arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci. 2016;7:32.Google Scholar
  89. 89.
    Zhang Z, Kong F, Vardhanabhuti B, Mustapha A, Lin M. Detection of engineered silver nanoparticle contamination in pears. J Agr Food Chem. 2012;60:10762–7.CrossRefGoogle Scholar
  90. 90.
    Metak AM, Nabhani F, Connolly SN. Migration of engineered nanoparticles from packaging into food products. Food Sci Technol. 2015;64:781–7.Google Scholar
  91. 91.
    Lari L, Dudkiewicz A. In: Nellist PD, editor. Electron microscopy and analysis group conference 2013; sample preparation and EFTEM of meta samples for nanoparticle analysis in food. IOP, Bristol; 2014.Google Scholar
  92. 92.
    Gatti AM, Tossini D, Gambarelli A, Montanari S, Capitani F. Investigation of the presence of inorganic micron- and nanosized contaminants in bread and biscuits by environmental scanning electron microscopy. Crit Rev Food. 2009;49:275–82.CrossRefGoogle Scholar
  93. 93.
    Kaegi R, Wagner T, Hetzer B, Sinnet B, Tzetkov G, Böller M. Size, number and chemical composition of nanosized particle in drinking water determined by analytical microscopy and LIBD. Water Res. 2008;42:2778–86.CrossRefGoogle Scholar
  94. 94.
    Peters RJB, Herrera-Rivera Z, Bouwmeester H, Weigel S, Marvin HJP. Advanced analytical techniques for the measurement of nanomaterials in complex samples: a comparison. Qual Assur Saf Crops Foods. 2014;6:281–90.CrossRefGoogle Scholar
  95. 95.
    Periasamy VS, Athinarayanan J, Al-Hadi AM, Al Juhaimi F, Mahmoud MH, Alshatwi AA. Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF CYPIA genes in human lung fibroblast cells. Environ Toxicol Pharmacol. 2015;39:176–86.CrossRefGoogle Scholar
  96. 96.
    Song X, Li R, Li H, Hu Z, Mustapha A, Lin M. Characterization and quantification of zinc oxide and titanium oxide nanoparticles in foods. Food Bioprocess Technol. 2014;7:456–62.CrossRefGoogle Scholar
  97. 97.
    Rebe-Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S. Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem. 2012;403:2843–50.CrossRefGoogle Scholar
  98. 98.
    von der Kammer F, Baborowski M, Friese K. Field-flow fractionation coupled to multi-angle laser light scattering detectors: applicability and analytical benefits for the analysis of environmental colloids. Anal Chim Acta. 2005;552:166–74.CrossRefGoogle Scholar
  99. 99.
    Montoro Bustos AR, Ruiz Encinar J, Sanz-Medel A. Mass spectrometry for the characterization of nanoparticles. Anal Bioanal Chem. 2013;405:5637–43.CrossRefGoogle Scholar
  100. 100.
    Dubascoux S, Le Hécho I, Potin Gautier M, Lespes G. On-line and off-line quantification of trace elements associated to colloids by As-FI-FFF and ICP-MS. Talanta. 2008;77:60–5.CrossRefGoogle Scholar
  101. 101.
    Giddings JC. A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci. 1966;1:123–5.Google Scholar
  102. 102.
    von der Kammer F. Summa cum laude doctorate degree Thesis at the Hamburg Universty of Technology (TUHH) in natural sciences (Dr. rer. nat.). Thesis title: “Characterization of environmental colloids applying field-flow fractionation - multi detection analysis with emphasis on light scattering techniques”. 2005.Google Scholar
  103. 103.
    Schimpf M, Caldwell K, Giddings JC. Field-flow fractionation handbook. New York: Wiley-Interscience; 2000.Google Scholar
  104. 104.
    Bednar AJ, Poda AR, Mitrano DM, Kennedy AJ, Gray EP, Ranville JF, et al. Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta. 2013;104:140–8.CrossRefGoogle Scholar
  105. 105.
    Calzolai L, Gilliland D, Pascual Garcìa C, Rossi F. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation. J Chromatogr A. 2011;1218:4234–9.CrossRefGoogle Scholar
  106. 106.
    Berne BJ, Pecora R. Dynamic light-scattering: with application to chemistry, biology and physics. New York: Dover; 2000.Google Scholar
  107. 107.
    Velimirovic M, Wagner S, von der Kammer F, Hofmann T. Applying a generic sample preparation approach to isolate nanomaterials from food and cosmetics. Conference Proceeding, SETAC Europe 25th Annual Meeting, Barcelona, Spain; 2015.Google Scholar
  108. 108.
    Tiede K, Tear SP, David H, Boxall ABA. Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 2009;43:3335–43.CrossRefGoogle Scholar
  109. 109.
    Tiede K, Boxall ABA, Wang X, Gore D, Tiede D, Baxter M, et al. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J Anal At Spectrom. 2010;25(7):1149–54.CrossRefGoogle Scholar
  110. 110.
    Philippe A, Gangloff M, Rakcheeva D, Schaumann GE. Evaluation of hydrodynamic chromatography coupled with inductively coupled plasma mass spectrometry detector for analysis of colloids in environmental media - effects of colloid composition, coating and shape. Anal Methods. 2014;6:8722–8.CrossRefGoogle Scholar
  111. 111.
    Philippe A, Schaumann GE. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media. PLoS One. 2014;9:e90559.CrossRefGoogle Scholar
  112. 112.
    Metreveli G, Philippe A, Schaumann GE. Disaggregation of silver nanoparticle homoaggregates in a river water matrix. Sci Tot Environ. 2015;535:35–44.CrossRefGoogle Scholar
  113. 113.
    Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, et al. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chima Acta. 2016;904:10–32.CrossRefGoogle Scholar
  114. 114.
    Gray EP, Bruton TA, Higgins CP, Halden RU, Westerhoff P, Ranville JF. Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J Anal At Spectrom. 2012;27:1532–9.CrossRefGoogle Scholar
  115. 115.
    Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133:2525–34.CrossRefGoogle Scholar
  116. 116.
    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell ‘sees’ in bionanoscience. J Am Chem Soc. 2010;132:5761–8.CrossRefGoogle Scholar
  117. 117.
    Contado C, Mejia J, Garcia O, Piret JP, Dumortier E, Toussaint O, et al. Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation. Anal Bioanal Chem. 2016;408:271–86.CrossRefGoogle Scholar
  118. 118.
    Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, et al. Characterization of nanomaterials in food by electron microscopy. TrAC-Trends Anal Chem. 2011;30:28–43.CrossRefGoogle Scholar
  119. 119.
    Dudkiewicz A, Boxall ABA, Chaudhry Q, Mølhave K, Tiede K, Hofmann P, et al. Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chem. 2015;176:472–9.CrossRefGoogle Scholar
  120. 120.
    Luo P, Morrison I, Dudkiewicz A, Tiede K, Boyes E, O’Toole P, et al. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy. J Microsc. 2013;250:32–41.CrossRefGoogle Scholar
  121. 121.
    Pace HE, Rogers NJ, Jaromilek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma-mass spectrometry. Anal Chem. 2011;83:9361–9.CrossRefGoogle Scholar
  122. 122.
    Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26:1362–71.CrossRefGoogle Scholar
  123. 123.
    Hineman A, Stephan C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J Anal At Spectrom. 2014;29:1252–7.CrossRefGoogle Scholar
  124. 124.
    Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol. 2014;48:10291–300.CrossRefGoogle Scholar
  125. 125.
    Commission of the European Communities. Commission Decision 2002/657/EC of 14 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Communities. 2002;L221:8ff.Google Scholar
  126. 126.
    Linsinger TPJ, Peters R, Weigel S. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Anal Bioanal Chem. 2014;406:3835–43.CrossRefGoogle Scholar
  127. 127.
    International Standardization Organization. ISO/TS 19590: Nanotechnologies — size distribution and concentration of inorganic nanoparticles in aqueous media via single particle inductively coupled plasma mass spectrometry; 2015.Google Scholar
  128. 128.
    Huynh KA, Siska E, Heithmar E, Tadjiki S, Pergantis SA. Detection and quantification of silver nanoparticles at environmentally relevant concentrations using asymmetric flow field-flow fractionation online with single particle inductively coupled plasma mass spectrometry. Anal Chem. 2016;88:4909–16.CrossRefGoogle Scholar
  129. 129.
    Vasco F, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810.CrossRefGoogle Scholar
  130. 130.
    Gallego-Urrea JA, Tuoriniemi J, Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. Trends Anal Chem. 2011;30:473–83.CrossRefGoogle Scholar
  131. 131.
    Allmaier G, Laschober C, Szymanski W. Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles—protein complexes, lipoparticles, and viruses. J Am Soc Mass Spectrom. 2008;19:1062–8.CrossRefGoogle Scholar
  132. 132.
    Allmaier G, Maißer A, Laschober C, Messner P, Szymanski WW. Parallel differential mobility analysis for electrostatic characterization and manipulation of nanoparticles and viruses. TrAC-Trends Anal Chem. 2011;30:123–32.CrossRefGoogle Scholar
  133. 133.
    Weiss VU, Kerul L, Kallinger P, Szymanski WW, Marchetti-Deschmann M, Allmaier G. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA). Anal Chim Acta. 2014;841:91–8.CrossRefGoogle Scholar
  134. 134.
    Demortier G. Application of nuclear microprobes to material of archaeological interest. Nucl Instrum Methods Phys Res B. 1988;30:434–43.CrossRefGoogle Scholar
  135. 135.
    Lozano O, Olivier T, Dogné JM, Lucas S. The use of PIXE for engineered nanomaterials quantification in complex matrices. J Phys Conf Ser. 2013;429:012010.CrossRefGoogle Scholar
  136. 136.
    Lozano O, Mejia J, Masereel B, Toussaint O, Lison D, Lucas S. Development of a PIXE analysis method for the determination of the biopersistence of SiC and TiC nanoparticles in rat lungs. Nanotoxicology. 2012;6:263–71.CrossRefGoogle Scholar
  137. 137.
    Lozano O, Mejia J, Tabarrant T, Masereel B, Dogné JM, Toussaint O, et al. Quantification of nanoparticles in aqueous food matrices using particle-induced X-ray emission. Anal Bioanal Chem. 2012;403:2835–41.CrossRefGoogle Scholar
  138. 138.
    Ricci F, Volpe G, Micheli L, Palleschi G. A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta. 2007;605:111–12924.CrossRefGoogle Scholar
  139. 139.
    Dabrio M, Rodríguez AR, Bordin G, Bebianno MJ, De Ley M, Sestáková I, et al. Recent developments in quantification methods for metallothionein. J Inorg Biochem. 2002;88:123–34.CrossRefGoogle Scholar
  140. 140.
    Grombe R, Charoud-Got J, Emteborg H, Linsinger TPJ, Seghers J, Wagner S, et al. Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem. 2014;406:3895–907.Google Scholar
  141. 141.
    Grombe R, Allmaier G, Charoud-Got J, Dudkiwwicz A, Emteborg H, Hofmann T, et al. Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat. Accred Qual Assur. 2015;20:3–16.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Monica Mattarozzi
    • 1
  • Michele Suman
    • 2
  • Claudia Cascio
    • 3
  • Davide Calestani
    • 4
  • Stefan Weigel
    • 3
    • 5
  • Anna Undas
    • 3
  • Ruud Peters
    • 3
  1. 1.Dipartimento di Chimica, Università degli Studi di ParmaParmaItaly
  2. 2.Barilla G. R. F.lli SpA, Advanced Laboratory ResearchParmaItaly
  3. 3.RIKILT Wageningen UR - Institute of Food SafetyWageningenThe Netherlands
  4. 4.IMEM-CNR, Parco Area delle Scienze 37/AParmaItaly
  5. 5.BfR – Federal Institute for Risk AssessmentBerlinGermany

Personalised recommendations