Analytical and Bioanalytical Chemistry

, Volume 409, Issue 1, pp 45–61 | Cite as

Introduction to polymer-based solid-contact ion-selective electrodes—basic concepts, practical considerations, and current research topics

  • Christoph Bieg
  • Kai Fuchsberger
  • Martin StelzleEmail author
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D.

Graphical Abstract


Ion-selective electrode Chemical sensors Solid contact Polymer membrane Reference electrodes 



Funding for this study was obtained in part from the Germany Ministry of Education and Research (BMBF) through grants 16SV6026 and 13XP5009B. The authors thank Priscilla Hermann for proof reading of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    Zuliani C, Diamond D. Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim Acta. 2012;84:29–34.CrossRefGoogle Scholar
  2. 2.
    Yan R, Qiu S, Tong L, Qian Y. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs. Chem Speciat Bioavail. 2016;28(1/4):72–7.CrossRefGoogle Scholar
  3. 3.
    Lewenstam A. Routines and challenges in clinical application of electrochemical ion‐sensors. Electroanalysis. 2014;26(6):1171–81.CrossRefGoogle Scholar
  4. 4.
    Xie X, Zhai J, Bakker E. Potentiometric response from ion-selective nanospheres with voltage-sensitive dyes. J Am Chem Soc. 2014;136(47):16465–8.CrossRefGoogle Scholar
  5. 5.
    Yuan D, Anthis AH, Ghahraman Afshar M, Pankratova N, Cuartero M, Crespo GA. All-solid-state potentiometric sensors with multi-walled carbon nanotube inner transducing layer for anion detection in environmental samples. Anal Chem. 2015.Google Scholar
  6. 6.
    Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors. Chem Rev. 2008;108(2):329–51.CrossRefGoogle Scholar
  7. 7.
    Barbooti M. Environmental applications of instrumental chemical analysis. CRC Press. 2015.Google Scholar
  8. 8.
    Mikhelson KN. Ion-selective electrodes. 2013: 162. Springer.Google Scholar
  9. 9.
    Upreti P, Metzger LE, Bühlmann P. Glass and polymeric membrane electrodes for the measurement of pH in milk and cheese. Talanta. 2004;63(1):139–48.CrossRefGoogle Scholar
  10. 10.
    De Marco R, Clarke G, Pejcic B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis. 2007;19(19/20):1987–2001.CrossRefGoogle Scholar
  11. 11.
    Bobacka J. Conducting polymer based solid state ion selective electrodes. Electroanalysis. 2006;18(1):7–18.CrossRefGoogle Scholar
  12. 12.
    Pechenkina I, Mikhelson K. Materials for the ionophore-based membranes for ion-selective electrodes: problems and achievements (review paper). Russ J Electrochem. 2015;51(2):93–102.CrossRefGoogle Scholar
  13. 13.
    Bakker E. Electroanalysis with membrane electrodes and liquid–liquid interfaces. Anal Chem. 2015.Google Scholar
  14. 14.
    Bühlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors. Chem Rev. 1998;98(4):1593–688.CrossRefGoogle Scholar
  15. 15.
    Bakker E, Bühlmann P, Pretsch E. Polymer membrane ion-selective electrodes “what are the limits? Electroanalysis. 1999;11(13):915–133.CrossRefGoogle Scholar
  16. 16.
    Zou XU, Cheong JH, Taitt BJ, Bühlmann P. Solid contact ion-selective electrodes with a well-controlled Co (II)/Co (III) redox buffer layer. Anal Chem. 2013Google Scholar
  17. 17.
    Michalska A. All-solid-state ion selective and all-solid-state reference electrodes. Electroanalysis. 2012;24(6):1253–65.CrossRefGoogle Scholar
  18. 18.
    Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE. Electrochemical sensors and biosensors. Anal Chem. 2012;84(2):685–707.CrossRefGoogle Scholar
  19. 19.
    Tymecki L, Glab S, Koncki R. Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology. Sensors. 2006;6(4):390.CrossRefGoogle Scholar
  20. 20.
    Cattrall R, Freiser H. Coated wire ion-selective electrodes. Anal Chem. 1971;43(13):1905–6.CrossRefGoogle Scholar
  21. 21.
    Michalska A. Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers. Anal Bioanal Chem. 2006;384(2):391–406.CrossRefGoogle Scholar
  22. 22.
    Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors based on conducting polymers. Electroanalysis. 2002;15(5/6):366–74.Google Scholar
  23. 23.
    Mousavi Z, Bobacka J, Ivaska A. Potentiometric Ag + sensors based on conducting polymers: a comparison between poly(3,4 ethylenedioxythiophene) and polypyrrole doped with sulfonated calixarenes. Electroanalysis. 2005;17(18):1609–15.CrossRefGoogle Scholar
  24. 24.
    Sutter J, Radu A, Peper S, Bakker E, Pretsch E. Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range. Anal Chim Acta. 2004;523(1):53–9.CrossRefGoogle Scholar
  25. 25.
    Parra EJ, Crespo GA, Riu J, Ruiz A, Rius FX. Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. Analyst. 2009;134(9):1905–10.CrossRefGoogle Scholar
  26. 26.
    Rius-Ruiz FX, Crespo GA, Bejarano-Nosas D, Blondeau P, Riu J, Rius FX. Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements. Anal Chem. 2011;83(22):8810–5.CrossRefGoogle Scholar
  27. 27.
    Ping J, Wang Y, Wu J, Ying Y. Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem Commun. 2011;13(12):1529–32.CrossRefGoogle Scholar
  28. 28.
    Li F, Ye J, Zhou M, Gan S, Zhang Q, Han D. All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst. 2012;137(3):618–23.CrossRefGoogle Scholar
  29. 29.
    Jaworska E, Lewandowski W, Mieczkowski J, Maksymiuk K, Michalska A. Critical assessment of graphene as ion-to-electron transducer for all-solid-state potentiometric sensors. Talanta. 2012;97:414–9.CrossRefGoogle Scholar
  30. 30.
    Hu J, Zou XU, Stein A, Bühlmann P. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal Chem. 2014;86(14):7111–8.CrossRefGoogle Scholar
  31. 31.
    Bakker E, Buhlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics. Chem Rev. 1997;97(8):3083–132.CrossRefGoogle Scholar
  32. 32.
    Bühlmann P, Chen LD (2012) Ion-selective electrodes with ionophore-doped sensing membranes. Supramol Chem. 2012. [From Molecules to Nanomaterials].Google Scholar
  33. 33.
    Szigeti Z, Vigassy T, Bakker E, Pretsch E. Approaches to improving the lower detection limit of polymeric membrane ion‐selective electrodes. Electroanalysis. 2006;18(13/14):1254–65.CrossRefGoogle Scholar
  34. 34.
    Inzelt G, Lewenstam A, Scholz F, Baucke FG. Handbook of reference electrodes. Springer. 2013.Google Scholar
  35. 35.
    Janata J. Principles of chemical sensors. Springer Science and Business Media. 2010.Google Scholar
  36. 36.
    Cammann K. [Das Arbeiten mit ionenselektiven Elektroden]. 1996.Google Scholar
  37. 37.
    Ives DJG, Janz GJ. General and theoretical introduction. In: Janz GJ, Ives DJG, editors. Reference electrodes theory and practice. New York, London: Academic; 1961.Google Scholar
  38. 38.
    Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: Wiley; 2006.Google Scholar
  39. 39.
    Inczedy J, Lengyel T, Ure AM, Gelencsér A, Hulanicki A. Compendium of analytical nomenclature. Oxford: Blackwell; 1998.Google Scholar
  40. 40.
    Thomas JDR. Ion-selective electrode reviews: Elsevier. 2013.Google Scholar
  41. 41.
    Buck R. Theory of potential distribution and response of solid state membrane electrodes. II. nonzero current. Anal Chem. 1968;40(10):1439–43.CrossRefGoogle Scholar
  42. 42.
    Mikhelson KN, Bobacka J, Lewenstam A, Ivaska A. Potentiometric performance and interfacial kinetics of neutral ionophore based ISE membranes in interfering ion solutions before and after contact with primary ions. Electroanalysis. 2001;13(10):876–81.CrossRefGoogle Scholar
  43. 43.
    Mikhelson KN, Bobacka J, Ivaska A, Lewenstam A, Bochenska M. Selectivity of lithium electrodes: correlation with ion–ionophore complex stability constants and with interfacial exchange current densities. Anal Chem. 2002;74(3):518–27.CrossRefGoogle Scholar
  44. 44.
    Mikhelson K, Bobacka J, Lewenstam A, Ivaska A. Towards reversibility of ion transfer across the interface between valinomycin membranes and aqueous electrolyte solutions. Russ J Electrochem. 2003;39(7):771–6.CrossRefGoogle Scholar
  45. 45.
    Mikhelson KN. AC-impedance studies of ion transfer across ionophore-based ion-selective membranes. Chem Anal (Warsaw). 2006;51(6):853.Google Scholar
  46. 46.
    Martı́nez-Barrachina S, Alonso J, Matia L, Prats R, del Valle M. All-solid-state potentiometric sensors sensitive to nonionic surfactants based on ionophores containing ethoxylate units. Talanta. 2001;54(5):811–20.CrossRefGoogle Scholar
  47. 47.
    Bühlmann P, Yajima S, Tohda K, Umezawa K, Nishizawa S, Umezawa Y. Studies on the phase boundaries and the significance of ionic sites of liquid membrane ion‐selective electrodes. Electroanalysis. 1995;7(9):811–6.CrossRefGoogle Scholar
  48. 48.
    Stefanac Z, Simon W. [In-vitro-Verhalten von Makrotetroliden in Membranen als Grundlage fur hochselektive kationenspezifische Elektrodensysteme. Basel: New Swiss Chemical Soc c/o Novartis AG; 1966. p. 436.Google Scholar
  49. 49.
    Donnan FG. [Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch‐chemischen Physiologie.]. Z Elektrochem Angew Phys Chem. 1911;17(14):572–81.Google Scholar
  50. 50.
    Buck RP. Ion selective electrodes. Anal Chem. 1976;48(5):23R–39.CrossRefGoogle Scholar
  51. 51.
    Mihali C, Vaum N. Use of plasticizers for electrochemical sensors: INTECH Open Access Publisher. 2012.Google Scholar
  52. 52.
    Khripoun GA, Volkova EA, Liseenkov AV, Mikhelson KN. Nitrate‐selective solid contact electrodes with poly(3‐octylthiophene) and poly(aniline) as ion‐to‐electron transducers buffered with electron‐ion‐exchanging resin. Electroanalysis. 2006;18(13/14):1322–8.CrossRefGoogle Scholar
  53. 53.
    Morf WE. The principles of ion-selective electrodes and of membrane transport. 433. Elsevier. 1981.Google Scholar
  54. 54.
    Jasielec JJ, Lisak G, Wagner M, Sokalski T, Lewenstam A. Nernst‐Planck‐Poisson model for the description of behaviour of solid‐contact ion‐selective electrodes at low analyte concentration. Electroanalysis. 2013;25(1):133–40.CrossRefGoogle Scholar
  55. 55.
    Jasielec J. Modeling of potentiometric ion sensors. 2013.Google Scholar
  56. 56.
    Nikolsky BP. Acta Physicochimica USSR. 1937;7(4):14.Google Scholar
  57. 57.
    Scholz F. Nikolsky’s ion exchange theory versus Baucke’s dissociation mechanism of the glass electrode. J Solid State Electrochem. 2010;15(1):67–8.CrossRefGoogle Scholar
  58. 58.
    Pungor E. [E H Uber die Anwendung Von Membranelektroden bei der Untersuchung von Ionenkonzentrationen.] Acta Chim Acad Sci Hungaricae 27(1/4):63. 1961.Google Scholar
  59. 59.
    Bakker E, Bühlmann P, Pretsch E. The phase-boundary potential model. Talanta. 2004;63(1):3–20.CrossRefGoogle Scholar
  60. 60.
    Guth U, Gerlach F, Decker M, Oelßner W, Vonau W. Solid-state reference electrodes for potentiometric sensors. J Solid State Electrochem. 2009;13(1):27–39.CrossRefGoogle Scholar
  61. 61.
    Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D. Microfabricated reference electrodes and their biosensing applications. Sensors. 2010;10(3):1679–715.CrossRefGoogle Scholar
  62. 62.
    Bakker E. Hydrophobic membranes as liquid junction-free reference electrodes. Electroanalysis. 1999;11(10/11):788–92.CrossRefGoogle Scholar
  63. 63.
    Anastasova-Ivanova S, Mattinen U, Radu A, Bobacka J, Lewenstam A, Migdalski J. Development of miniature all-solid-state potentiometric sensing system. Sens Actuators B. 2010;146(1):199–205.CrossRefGoogle Scholar
  64. 64.
    Vonau W, Oelßner W, Guth U, Henze J. An all-solid-state reference electrode. Sens Actuators B. 2010;144(2):368–73.CrossRefGoogle Scholar
  65. 65.
    Rius-Ruiz FX, Kisiel A, Michalska A, Maksymiuk K, Riu J, Rius FX. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Anal Bioanal Chem. 2011;399(10):3613–22.CrossRefGoogle Scholar
  66. 66.
    Mamińska R, Dybko A, Wróblewski W. All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sens Actuators B. 2006;115(1):552–7.CrossRefGoogle Scholar
  67. 67.
    Shvarev A, Bakker E. Pulsed galvanostatic control of ionophore-based polymeric ion sensors. Anal Chem. 2003;75(17):4541–50.CrossRefGoogle Scholar
  68. 68.
    Kisiel A, Marcisz H, Michalska A, Maksymiuk K. All-solid-state reference electrodes based on conducting polymers. Analyst. 2005;130(12):1655–62.CrossRefGoogle Scholar
  69. 69.
    Kisiel A, Michalska A, Maksymiuk K, Hall EA. All‐solid‐state reference electrodes with poly (n‐butyl acrylate) based membranes. Electroanalysis. 2008;20(3):318–23.CrossRefGoogle Scholar
  70. 70.
    Kisiel A, Donten M, Mieczkowski J, Rius-Ruiz FX, Maksymiuk K, Michalska A. Polyacrylate microspheres composite for all-solid-state reference electrodes. Analyst. 2010;135(9):2420–5.CrossRefGoogle Scholar
  71. 71.
    Mousavi Z, Granholm K, Sokalski T, Lewenstam A. An analytical quality solid-state composite reference electrode. Analyst. 2013;138(18):5216–20.CrossRefGoogle Scholar
  72. 72.
    Lee HJ, Hong US, Lee DK, Shin JH, Nam H, Cha GS. Solvent-processible polymer membrane-based liquid junction-free reference electrode. Anal Chem. 1998;70(16):3377–83.CrossRefGoogle Scholar
  73. 73.
    Ha J, Martin SM, Jeon Y, Yoon IJ, Brown RB, Nam H. A polymeric junction membrane for solid-state reference electrodes. Anal Chim Acta. 2005;549(1):59–66.CrossRefGoogle Scholar
  74. 74.
    Yoon HJ, Shin JH, Lee SD, Nam H, Cha GS, Strong TD. Solid-state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis. Sens Actuators B. 2000;64(1):8–14.CrossRefGoogle Scholar
  75. 75.
    Vincze A, Horvai G. The design of reference electrodes without liquid junction. Electrochem Soc Proc. 1997;19:550–5.Google Scholar
  76. 76.
    Kakiuchi T. Ionic liquid salt bridge—current stage and perspectives: a mini review. Electrochem Commun. 2014;45:37–9.CrossRefGoogle Scholar
  77. 77.
    Mattinen U, Bobacka J, Lewenstam A. Solid-contact reference electrodes based on lipophilic salts. Electroanalysis. 2009;21(17/18):1955–60.CrossRefGoogle Scholar
  78. 78.
    Kakiuchi T, Yoshimatsu T. A new salt bridge based on the hydrophobic room-temperature molten salt. Bull Chem Soc Jap. 2006;79(7):1017–24.CrossRefGoogle Scholar
  79. 79.
    Zhang L, Miyazawa T, Kitazumi Y, Kakiuchi T. Ionic liquid salt bridge with low solubility of water and stable liquid junction potential based on a mixture of a potential-determining salt and a highly hydrophobic ionic liquid. Anal Chem. 2012;84(7):3461–4.CrossRefGoogle Scholar
  80. 80.
    Zhang T, Lai CZ, Fierke MA, Stein A, Bühlman P. Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact. Anal Chem. 2012;84(18):7771–8.CrossRefGoogle Scholar
  81. 81.
    Zou XU, Chen LD, Lai CZ, Bühlmann P. Ionic liquid reference electrodes with a well‐controlled Co (II)/Co (III) redox buffer as solid contact. Electroanalysis. 2015;27(3):602–8.CrossRefGoogle Scholar
  82. 82.
    Hu J, Ho KT, Zou XU, Smyrl WH, Stein A, Bühlmann P. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices. Anal Chem. 2015;87(5):2981–7.CrossRefGoogle Scholar
  83. 83.
    Buck RP, Lindner E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem. 1994;66(12):2527–36.CrossRefGoogle Scholar
  84. 84.
    Lindner E, Umezawa Y. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl Chem. 2008;80(1):85–104.CrossRefGoogle Scholar
  85. 85.
    Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E. Solid contact potentiometric sensors for trace level measurements. Anal Chem. 2006;78(4):1318–22.CrossRefGoogle Scholar
  86. 86.
    Michalska A, Maksymiuk K. The influence of spontaneous charging/discharging of conducting polymer ion-to-electron transducer on potentiometric responses of all-solid-state calcium-selective electrodes. J Electroanal Chem. 2005;576(2):339–52.CrossRefGoogle Scholar
  87. 87.
    Sokalski T, Zwickl T, Bakker E, Pretsch E. Lowering the detection limit of solvent polymeric ion-selective electrodes. 1. modeling the influence of steady-state ion fluxes. Anal Chem. 1999;71(6):1204–9.CrossRefGoogle Scholar
  88. 88.
    Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E. Potential drifts of solid‐contacted ion‐selective electrodes due to zero‐current ion fluxes through the sensor membrane. Electroanalysis. 2000;12(16):12861292.CrossRefGoogle Scholar
  89. 89.
    Lindfors T. Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes. J Solid State Electrochem. 2009;13(1):77–89.CrossRefGoogle Scholar
  90. 90.
    Veder J-P, De Marco R, Clarke G, Chester R, Nelson A, Prince K. Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes. Anal Chem. 2008;80(17):6731–40.CrossRefGoogle Scholar
  91. 91.
    Püntener M, Fibbioli M, Bakker E, Pretsch E. Response and diffusion behavior of mobile and covalently immobilized H + ‐ionophores in polymeric membrane ion‐selective electrodes. Electroanalysis. 2002;14(19/20):1329–38.CrossRefGoogle Scholar
  92. 92.
    SE 950 Ellipsometer Accessory for FT-IR Spectrometer. 1–3.Google Scholar
  93. 93.
    Górski Ł, Matusevich A, Pietrzak M, Wang L, Meyerhoff M, Malinowska E. Influence of inner transducer properties on EMF response and stability of solid-contact anion-selective membrane electrodes based on metalloporphyrin ionophores. J Solid State Electrochem. 2009;13(1):157164.CrossRefGoogle Scholar
  94. 94.
    Bobacka J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem. 1999;71(21):4932–7.CrossRefGoogle Scholar
  95. 95.
    Badoz-Lambling J, Desbarres J, Quéré A. Ionic distribution coefficients and electrochemical potentials. Anal Lett. 1972;5(10):729–35.CrossRefGoogle Scholar
  96. 96.
    Ciani S, Eisenman G, Szabo G. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes. J Membrane Biol. 1969;1(1):1–36.CrossRefGoogle Scholar
  97. 97.
    Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya S. Potentiometric selectivity coefficients of ion-selective electrodes. part I. inorganic cations (technical report). Pure Appl Chem. 2000;72(10):1851–2082.CrossRefGoogle Scholar
  98. 98.
    Bakker E, Pretsch E, Bühlmann P. Selectivity of potentiometric ion sensors. Anal Chem. 2000;72(6):1127–33.CrossRefGoogle Scholar
  99. 99.
    Bakker E. Moderne potentiometrie. Angew Chem. 2007;119(30):5758–67.CrossRefGoogle Scholar
  100. 100.
    Lewenstam A, Maj‐Zurawska M, Hulanicki A. Application of ion‐selective electrodes in clinical analysis. Electroanalysis. 1991;3(8):727–34.CrossRefGoogle Scholar
  101. 101.
    Bakker E, Meruva R, Pretsch E, Meyerhoff M. Selectivity of polymer membrane-based ion-selective electrodes: self-consistent model describing the potentiometric response in mixed ion solutions of different charge. Anal Chem. 1994;66(19):3021–30.CrossRefGoogle Scholar
  102. 102.
    Bakker E. Determination of improved selectivity coefficients of polymer membrane ion‐selective electrodes by conditioning with a discriminated ion. J Electrochem Soc. 1996;143(4):L83–5.CrossRefGoogle Scholar
  103. 103.
    Bakker E. Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes. Anal Chem. 1997;69(6):1061–9.CrossRefGoogle Scholar
  104. 104.
    Bieg C, Link GS, Fuchsberger K, Stelzle M. Gammy sterisable, dry storageable, long-term stable pH ISE. 2015.Google Scholar
  105. 105.
    Heng LY, Hall EA. Methacrylic–acrylic polymers in ion-selective membranes: achieving the right polymer recipe. Anal Chim Acta. 2000;403(1):77–89.CrossRefGoogle Scholar
  106. 106.
    Zahran EM, New A, Gavalas V, Bachas LG. Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. Analyst. 2014;139(4):757–63.CrossRefGoogle Scholar
  107. 107.
    Lindner E, Cosofret V, Ufer S, Buck R, Kao W, Neuman M. Ion‐selective membranes with low plasticizer content: electroanalytical characterization and biocompatibility studies. J Biomed Mat Res. 1994;28(5):591–601.CrossRefGoogle Scholar
  108. 108.
    Poplawski ME, Brown RB, Rho KL, Yun SY, Lee HJ, Cha GS. One-component room temperature vulcanizing-type silicone rubber-based sodium-selective membrane electrodes. Anal Chim Acta. 1997;355(2):249–57.CrossRefGoogle Scholar
  109. 109.
    Heng LY, Hall EA. Producing “self-plasticizing” ion-selective membranes. Anal Chem. 2000;72(1):42–51.CrossRefGoogle Scholar
  110. 110.
    Heng LY, Hall EA. Assessing a photocured self-plasticised acrylic membrane recipe for Na + and K+ ion selective electrodes. Anal Chim Acta. 2001;443(1):25–40.CrossRefGoogle Scholar
  111. 111.
    Qin Y, Peper S, Bakker E. Plasticizer free polymer membrane ion selective electrodes containing a methacrylic copolymer matrix. Electroanalysis. 2002;14(19/20):1375–81.CrossRefGoogle Scholar
  112. 112.
    Lugert EC, Lodge TP, Bühlmann P. Plasticization of amorphous perfluoropolymers. J Polym Sci Part B: Polym Phys. 2008;46(5):516–25.CrossRefGoogle Scholar
  113. 113.
    Lai CZ, Koseoglu SS, Lugert EC, Boswell PG, Rabai J, Lodge TP. Fluorous polymeric membranes for ionophore-based ion-selective potentiometry: how inert is Teflon AF? J Am Chem Soc. 2009;131(4):1598–606.CrossRefGoogle Scholar
  114. 114.
    Boswell PG, Szíjjártó C, Jurisch M, Gladysz JA, Rábai J, Bühlmann P. Fluorophilic ionophores for potentiometric pH determinations with fluorous membranes of exceptional selectivity. Anal Chem. 2008;80(6):2084–90.CrossRefGoogle Scholar
  115. 115.
    Chen LD, Mandal D, Pozzi G, Gladysz JA, Bühlmann P. Potentiometric sensors based on fluorous membranes doped with highly selective ionophores for carbonate. J Am Chem Soc. 2011;133(51):20869–77.CrossRefGoogle Scholar
  116. 116.
    Lai C-Z, Fierke MA, Costa RCAD, Gladysz JA, Stein A, Bühlmann P. Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes. Anal Chem. 2010;82(18):7634–40.CrossRefGoogle Scholar
  117. 117.
    Boswell PG, Anfang AC, Bühlmann P. Preparation of a highly fluorophilic phosphonium salt and its use in a fluorous anion-exchanger membrane with high selectivity for perfluorinated acids. J Fluorine Chem. 2008;129(10):961–7.CrossRefGoogle Scholar
  118. 118.
    Hauser PC, Chiang DW, Wright GA. A potassium-ion selective electrode with valinomycin based poly (vinyl chloride) membrane and a poly (vinyl ferrocene) solid contact. Anal Chim Acta. 1995;302(2):241–8.CrossRefGoogle Scholar
  119. 119.
    Fibbioli M, Bandyopadhyay K, Liu S-G, Echegoyen L, Enger O, Diederich F. Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes electronic supplementary information (ESI) available: synthetic and spectroscopic data for 1 and 2 is available from the RSC web site: Chem Commun. 2000. (5):339–340
  120. 120.
    Mastragostino M, Arbizzani C, Soavi F. Polymer-based supercapacitors. J Power Sources. 2001;97:812–5.CrossRefGoogle Scholar
  121. 121.
    Ahonen HJ, Lukkari J, Kankare J. N-and p-doped poly (3,4-ethylenedioxythiophene): two electronically conducting states of the polymer. Macromolecules. 2000;33(18):6787–93.CrossRefGoogle Scholar
  122. 122.
    Mastragostino M, Arbizzani C, Soavi F. Conducting polymers as electrode materials in supercapacitors. Solid State Ionics. 2002;148(3):493–8.CrossRefGoogle Scholar
  123. 123.
    Arbizzani C, Catellani M, Mastragostino M, Mingazzini C. N-and p-doped polydithieno[3,4-B: 3′,4′-D]thiophene: a narrow band gap polymer for redox supercapacitors. Electroch Acta. 1995;140(12):1871–6.CrossRefGoogle Scholar
  124. 124.
    Mastragostino M, Soddu L. Electrochemical characterization of “n” doped polyheterocyclic conducting polymers–I. Polybithiophene. Electrochim Acta. 1990;35(2):463–6.CrossRefGoogle Scholar
  125. 125.
    Michalska AJ, Appaih-Kusi C, Heng LY, Walkiewicz S, Hall EAH. An experimental study of membrane materials and inner contacting layers for ion-selective K+ electrodes with a stable response and good dynamic range. Anal Chem. 2004;76(7):2031–9.CrossRefGoogle Scholar
  126. 126.
    Han W-S, Yoo S-J, Kim S-H, Hong T-K, Chung K-C. Behavior of a polypyrrole solid contact pH-selective electrode based on tertiary amine ionophores containing different alkyl chain lengths between nitrogen and a phenyl group. Anal Sci. 2003;19(3):357–60.CrossRefGoogle Scholar
  127. 127.
    Vázquez M, Bobacka J, Ivaska A, Lewenstam A. Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sens Actuators B. 2002;82(1):7–13.CrossRefGoogle Scholar
  128. 128.
    Crespo GA, Macho S, Rius FX. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem. 2008;80(4):1316.CrossRefGoogle Scholar
  129. 129.
    Lai CZ, Fierke MA, Stein A, Buhlmann P. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal Chem. 2007;79(12):4621–6.CrossRefGoogle Scholar
  130. 130.
    Fierke MA, Lai C-Z, Bühlmann P, Stein A. Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes. Anal Chem. 2009;82(2):680–8.CrossRefGoogle Scholar
  131. 131.
    Lindner E, Gyurcsányi RE. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem. 2009;13(1):51–68.CrossRefGoogle Scholar
  132. 132.
    Zou XU, Zhen XV, Cheong JH, Bühlmann P. Calibration-free ionophore-based ion-selective electrodes with a Co (II)/Co (III) redox couple-based solid contact. Anal Chem. 2014;86(17):8687–92.CrossRefGoogle Scholar
  133. 133.
    Bakker E. Enhancing ion-selective polymeric membrane electrodes by instrumental control. TrAC Trends Anal Chem. 2014;53:98–105.CrossRefGoogle Scholar
  134. 134.
    Sand III HJ. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. London, Edinburgh, Dublin Philosophical Mag J Sci. 1901;1(1):45–79.CrossRefGoogle Scholar
  135. 135.
    Ghahraman Afshar M, Crespo GA, Bakker E. Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode. Anal Chem. 2012;84(20):8813–21.CrossRefGoogle Scholar
  136. 136.
    Lindner E, Gyurcsányi RE, Buck RP. Tailored transport through ion‐selective membranes for improved detection limits and selectivity coefficients. Electroanalysis. 1999;11(10/11):695–702.CrossRefGoogle Scholar
  137. 137.
    Peshkova MA, Sokalski T, Mikhelson KN, Lewenstam A. Obtaining nernstian response of a Ca2 + -selective electrode in a broad concentration range by tuned galvanostatic polarization. Anal Chem. 2008;80(23):9181–7.CrossRefGoogle Scholar
  138. 138.
    Peshkova MA, Koltashova ES, Khripoun GA, Mikhelson KN. Improvement of the upper limit of the ISE Nernstian response by tuned galvanostatic polarization. Electrochim Acta. 2015;167:187–93.CrossRefGoogle Scholar
  139. 139.
    Peshkova MA, Mikhelson KN. Solvent polymeric membrane ion-selective electrodes under galvanostatic control: powerful tool for analysis of extremely diluted samples. Electrochim Acta. 2013;110:829–35.CrossRefGoogle Scholar
  140. 140.
    Höfler L, Bedlechowicz I, Vigassy T, Gyurcsanyi RE, Bakker E, Pretsch E. Limitations of current polarization for lowering the detection limit of potentiometric polymeric membrane sensors. Anal Chem. 2009;81(9):3592–9.CrossRefGoogle Scholar
  141. 141.
    Sokalski T, Ceresa A, Zwickl T, Pretsch E. Large improvement of the lower detection limit of ion-selective polymer membrane electrodes. J Am Chem Soc. 1997;119(46):11347–8.CrossRefGoogle Scholar
  142. 142.
    Michalska A, Konopka A, Maj-Zurawska M. All-solid-state calcium solvent polymeric membrane electrode for low-level concentration measurements. Anal Chem. 2003;75(1):141.CrossRefGoogle Scholar
  143. 143.
    Lingenfelter P, Bedlechowicz-Sliwakowska I, Sokalski T, Maj-Zurawska M, Lewenstam A. Time-dependent phenomena in the potential response of ion-selective electrodes treated by the Nernst-Planck-Poisson model. 1. intramembrane processes and selectivity. Anal Chem. 2006;78(19):6783–91.CrossRefGoogle Scholar
  144. 144.
    Lisak G, Sokalski T, Bobacka J, Harju L, Mikhelson K, Lewenstam A. Tuned galvanostatic polarization of solid-state lead-selective electrodes for lowering of the detection limit. Anal Chim Acta. 2011;707(1):1–6.CrossRefGoogle Scholar
  145. 145.
    Vanamo U, Bobacka J. Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer. Electrochim Acta. 2014;122:316–21.CrossRefGoogle Scholar
  146. 146.
    Lewenstam A, Bobacka J, Ivaska A. Mechanism of ionic and redox sensitivity of p-type conducting polymers: part 1. theory. J Electroanal Chem. 1994;368(1/2):23–31.CrossRefGoogle Scholar
  147. 147.
    Vanamo U, Bobacka J. Instrument-free control of the standard potential of potentiometric solid-contact ion-selective electrodes by short-circuiting with a conventional reference electrode. Anal Chem. 2014;86(21):10540–5.CrossRefGoogle Scholar
  148. 148.
    Hupa E, Vanamo U, Bobacka J. Novel ion‐to‐electron transduction principle for solid‐contact ISEs. Electroanalysis. 2015;27(3):591–4.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christoph Bieg
    • 1
  • Kai Fuchsberger
    • 1
  • Martin Stelzle
    • 1
    Email author
  1. 1.Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany

Personalised recommendations