Analytical and Bioanalytical Chemistry

, Volume 408, Issue 28, pp 8211–8220 | Cite as

Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique

  • Nadine Mofaddel
  • Sophie Fourmentin
  • Fréderic Guillen
  • David Landy
  • Géraldine Gouhier
Research Paper


The state of the art of inclusion complex formation between cyclodextrins and ionic liquids is reported. Mechanisms, stoichiometries, and binding constants are summarized and classified by anion. We investigated the supramolecular interactions between the β-cyclodextrin cavity and six ionic liquids based on 1-dodecyl-3-methylimidazolium by affinity capillary electrophoresis and compared the results with those obtained by isothermal titration calorimetry. We show that the presence of basic or acidic buffers leads to a metathesis reaction, underlining the limitation of the affinity capillary electrophoresis technique.


Affinity capillary electrophoresis Binding constants Cyclodextrin Ionic liquid Isothermal titration calorimetry 



The authors thank Claudette Martin from Rouen University for the analysis of the ionic liquids.

Compliance with ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9931_MOESM1_ESM.pdf (14 kb)
ESM 1 (PDF 13.6 KB)


  1. 1.
    D’Souza VT, Lipkowitz KB. Cyclodextrins: introduction. Chem Rev. 1998;98:1741–2.CrossRefGoogle Scholar
  2. 2.
    Kenneth AC. Binding constants: the measurement of molecular complex stability. 1st ed. Oxford: Wiley-Interscience; 1987.Google Scholar
  3. 3.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–64.CrossRefGoogle Scholar
  4. 4.
    Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev. 2011;111:3508–76.CrossRefGoogle Scholar
  5. 5.
    Anderson JL, Ding J, Welton T, Amstrong DW. Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc. 2002;124:14247–54.CrossRefGoogle Scholar
  6. 6.
    Rogalski M, Modaressi A, Magri P, et al. Physico-chemical properties and phase behavior of the ionic liquid-β-cyclodextrin complexes. Int J Mol Sci. 2013;14:16638–55.CrossRefGoogle Scholar
  7. 7.
    Mahlambi MM, Malefetse TJ, Mamba BB, Krause RWM. Polymerization of cyclodextrin-ionic liquid complexes for the removal of organic and inorganic contaminants from water. In: Korkorin A, editor. Ionic liquids: applications and perspectives. Rijeka: InTech; 2011. p. 115–51.Google Scholar
  8. 8.
    Duri S, Tran CD. Supramolecular composite materials from cellulose, chitosan, and cyclodextrin: facile preparation and their selective inclusion complex formation with endocrine disruptors. Langmuir. 2013;29:5037–49.CrossRefGoogle Scholar
  9. 9.
    Raoov M, Mohamad S, Abas MR. Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and arsenic (V). Int J Mol Sci. 2014;15:100–19.CrossRefGoogle Scholar
  10. 10.
    Amajjahe S, Munteanu M, Ritter H. Switching the solubility of PMMA bearing attached cyclodextrin-moieties by supramolecular interactions with ionic liquids. Macromol Rapid Commun. 2009;30:904–8.CrossRefGoogle Scholar
  11. 11.
    Leclercq L, Lacour M, Sanon SH, Schmitzer AR. Thermoregulated microemulsions by cyclodextrin sequestration: a new approach to efficient catalyst recovery. Chem Eur J. 2009;15:6327–31.CrossRefGoogle Scholar
  12. 12.
    Li S, Xing P, Hou Y, Yang J, Yang X, Hao BA. Formation of a sheet-like hydrogel from vesicles via precipitates based on an ionic liquid-based surfactant and β-cyclodextrin. J Mol Liq. 2013;188:74–80.CrossRefGoogle Scholar
  13. 13.
    Zhang J, Shen X. Temperature-induced reversible transition between vesicle and supramolecular hydrogel in the aqueous ionic liquid-β-cyclodextrin system. J Phys Chem B. 2013;117:1451–7.CrossRefGoogle Scholar
  14. 14.
    Jiangna G, Chao Y, Mingyu G, Lei W, Feng Y. Flexible and voltage-switchable polymer velcro constructed using host-guest recognition between poly(ionic liquid) strips. Chem Sci. 2014;5:3261–6.CrossRefGoogle Scholar
  15. 15.
    Zhou Z, Li X, Chen X, Hao X. Synthesis of ionic liquids functionalized β-cyclodextrin-bonded chiral stationary phases and their applications in high-performance liquid chromatography. Anal Chim Acta. 2010;678:208–14.CrossRefGoogle Scholar
  16. 16.
    Huang K, Zhang X, Amstrong DW. Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography. J Chromatogr A. 2010;1217:5261–73.CrossRefGoogle Scholar
  17. 17.
    Stalcup AM, Cabovska B. Ionic liquids in chromatography and capillary electrophoresis. J Liq Chromatogr. 2004;27:1443–59.CrossRefGoogle Scholar
  18. 18.
    Mendes A, Branco LC, Morais C, Simplicio AL. Electroosmotic flow modulation in capillary electrophoresis by organic cations from ionic liquids. Electrophoresis. 2012;33:1182–90.CrossRefGoogle Scholar
  19. 19.
    Tran CD, De Paoli Lacerda S. Near-infrared spectroscopic investigation of inclusion complex formation of cyclodextrins in room-temperature ionic liquid. J Incl Phenom Macrocycl Chem. 2002;44:185–90.CrossRefGoogle Scholar
  20. 20.
    Gao YA, Li ZH, Du JM, et al. Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chem Eur J. 2005;11:5875–80.CrossRefGoogle Scholar
  21. 21.
    He Y, Shen X. Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J Photochem Photobiol A. 2008;197:253–9.CrossRefGoogle Scholar
  22. 22.
    Rak J, Ondo D, Tkadlecova M, Dohnal V. On the interaction of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with β-cyclodextrin in aqueous solutions. Z Phys Chem. 2010;224:893–906.CrossRefGoogle Scholar
  23. 23.
    Zhang J, Shen X. Multiple equilibria interaction pattern between the ionic liquids CnmimPF6 and β-cyclodextrin in aqueous solutions. J Phys Chem B. 2011;115:11852–61.CrossRefGoogle Scholar
  24. 24.
    Li HG, Zhang Q, Liu M, Liu J, Sun DZ. Studies on interaction of ionic liquids with cyclodextrins in aqueous solution. Indian J Chem. 2010;49A:752–6.Google Scholar
  25. 25.
    Roy MN, Roy MC, Roy K. Investigation of an inclusion complex formed by ionic liquid and β-cyclodextrin through hydrophilic and hydrophobic interactions. RSC Adv. 2015;5:56717–23.CrossRefGoogle Scholar
  26. 26.
    Amajjahe S, Choi S, Munteanu M, Ritter H. Pseudopolyanions based on poly(NIPAAM-co-β-cyclodextrin methacrylate) and ionic liquids. Angew Chem Int Ed. 2008;47:3435–7.CrossRefGoogle Scholar
  27. 27.
    Hodyna D, Bardeau JF, Metelytsia L, et al. Efficient antimicrobial activity and reduced toxicity of 1-dodecyl-3-methylimidazolium tetrafluoroborate ionic liquid/β-cyclodextrin complex. Chem Eng J. 2016;284:1136–45.CrossRefGoogle Scholar
  28. 28.
    Gao Y, Zhao X, Dong B, Zheng L, Li N, Zhang S. Inclusion complexes of β-cyclodextrin with ionic liquid surfactants. J Phys Chem B. 2006;110:8576–81.CrossRefGoogle Scholar
  29. 29.
    Li N, Liu J, Zhao X, et al. Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf A. 2007;292:196–201.CrossRefGoogle Scholar
  30. 30.
    He Y, Chen Q, Xu C, Zhang J, Shen X. Interaction between ionic liquids and β-cyclodextrin: a discussion of association pattern. J Phys Chem B. 2009;113:231–8.CrossRefGoogle Scholar
  31. 31.
    Zhang J, Shi J, Shen X. Further understanding of the multiple equilibria interaction pattern between ionic liquid and β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2014;79:319–27.CrossRefGoogle Scholar
  32. 32.
    Semino R, Rodríguez J. Molecular dynamics study of ionic liquids complexation within β-cyclodextrins. J Phys Chem B. 2015;119:4865–72.CrossRefGoogle Scholar
  33. 33.
    Funasaki N, Ishikawa S, Neya S. 1:1 and 1:2 complexes between long-chain surfactant and α-cyclodextrin studied by NMR. J Phys Chem B. 2004;108:9593–8.CrossRefGoogle Scholar
  34. 34.
    Ondo D, Tkadlecova M, Dohnal V, et al. Interaction of ionic liquids ions with natural cyclodextrins. J Phys Chem B. 2011;115:10285–97.CrossRefGoogle Scholar
  35. 35.
    Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426.CrossRefGoogle Scholar
  36. 36.
    Lungwitz R, Spange S. A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J Chem. 2008;32:392–4.CrossRefGoogle Scholar
  37. 37.
    Schou C, Heegaard NH. Recent applications of affinity interactions in capillary electrophoresis. Electrophoresis. 2006;27:44–59.CrossRefGoogle Scholar
  38. 38.
    Qi S, Cui S, Chen X, Hu Z. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with β-cyclodextrin as modifier in capillary zone electrophoresis. J Chromatogr A. 2004;1059:191–8.CrossRefGoogle Scholar
  39. 39.
    Aupoix A, Pegot B, Vo-Thanh G. Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron. 2010;66:1352–6.CrossRefGoogle Scholar
  40. 40.
    Wang M, Pan X, Xia S, Zhang C, Li W, Dai S. Regulating mesogenic properties of ionic liquid crystals by preparing binary or multi-component systems. J Mater Chem. 2012;22:2299–305.CrossRefGoogle Scholar
  41. 41.
    Rodriguez-Palmeiro I, Rodriguez-Escontrela I, Rodriguez O, Arce A, Soto A. Characterization and interfacial properties of the surfactant ionic liquid 1-dodecyl-3-methyl imidazolium acetate for enhanced oil recovery. RSC Adv. 2015;5:37392–8.CrossRefGoogle Scholar
  42. 42.
    Liu Y, Shamsi SA. Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis. J Chromatogr A. 2014;1360:296–304.CrossRefGoogle Scholar
  43. 43.
    François Y, Varenne A, Sirieix-Plenet J, Gareil P. Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis. J Sep Sci. 2007;30:751–60.CrossRefGoogle Scholar
  44. 44.
    Bertaut E, Landy D. Improving ITC studies of cyclodextrin inclusion compounds by global analysis of conventional and non-conventional experiments. Beilstein J Org Chem. 2014;10:2630–41.CrossRefGoogle Scholar
  45. 45.
    Connors KA. Measurement of cyclodextrin complex stability constants. Compr Supramol Chem. 1996;3:205–41.Google Scholar
  46. 46.
    Tanaka Y, Terabe S. Estimation of binding constants by capillary electrophoresis. J Chromatogr B. 2002;768:81–92.CrossRefGoogle Scholar
  47. 47.
    Parker KM, Stalcup AM. Affinity capillary electrophoresis and isothermal titration calorimetry for the determination of fatty acid binding with beta-cyclodextrin. J Chromatogr A. 2008;1204:171–82.CrossRefGoogle Scholar
  48. 48.
    Danel C, Duval C, Azaroual N, et al. Complexation of triptolide and its succinate derivative with cyclodextrins: affinity capillary electrophoresis, isothermal titration calorimetry and 1H NMR studies. J Chromatogr A. 2011;1218:8708–14.CrossRefGoogle Scholar
  49. 49.
    Favrelle A, Gouhier G, Guillen F, et al. Structure-binding effects: comparative binding of 2-anilino-6-naphthalenesulfonate by a series of alkyl- and hydroxyalkyl-substituted β-cyclodextrins. J Phys Chem B. 2015;119:12921–30.CrossRefGoogle Scholar
  50. 50.
    Lynen F, Borremans F, Sandra P. Practical evaluation of the influence of excessive sample concentration on the estimation of dissociation constants with affinity capillary electrophoresis. Electrophoresis. 2001;22:1974–8.CrossRefGoogle Scholar
  51. 51.
    Le Saux T, Varenne A, Gareil P. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Electrophoresis. 2005;26:3094–104.CrossRefGoogle Scholar
  52. 52.
    Steinbock B, Vichaikul PP, Steinbock O. Nonlinear analysis of dynamic binding in affinity capillary electrophoresis demonstrated for inclusion complexes of β-cyclodextrin. J Chromatogr A. 2001–2002;943:139–46.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nadine Mofaddel
    • 1
  • Sophie Fourmentin
    • 2
  • Fréderic Guillen
    • 1
    • 3
  • David Landy
    • 2
  • Géraldine Gouhier
    • 1
  1. 1.UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014)Normandie UniversitéRouenFrance
  2. 2.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417ULCODunkerqueFrance
  3. 3.SPCMIB, CNRS-UMR 5068Université Toulouse III - Paul SabatierToulouse Cedex 9France

Personalised recommendations