Skip to main content
Log in

Identification of detergents for forensic fiber analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript


Trace fibers are an important form of trace evidence, and identification of exogenous substances on textile fibers provides valuable information about the origin of the fiber. Laundering textiles can provide a unique fluorescent spectral signature of the whitening agent in the detergent that adsorbs to the fiber. Using fluorescence microscopy, the spectral characteristics of seven detergents adsorbed to single fibers drawn from laundered textiles were investigated, and principal component analysis of clusters was used to characterize the type of detergent on the fiber. On dyed nylon fibers, spectra from eight different detergent pairs could be resolved and washed validation fibers correctly classified. On dyed acrylic fibers, five different detergent pairs could be resolved and identified. Identification of the detergent type may prove useful in matching a trace fiber to its bulk specimen of origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. The Warren Commission’s Report; 1964.

  2. Oien CT. case management issues from crime to Courtroom Clearwater, FL U.S.A.; 2007.

  3. Miller JV, Bartick EG. Forensic analysis of single fibers by Raman spectroscopy. Appl Spectrosc. 2001;55(12):1729–32.

    Article  CAS  Google Scholar 

  4. Grieve M. Fibres and their examination in forensic science. Berlin: Springer; 1990.

    Google Scholar 

  5. Goodpaster JV, Liszewski EA. Forenisc analysis of dyed textile fibers. Anal Bioanal Chem. 2009;394:2009–18.

    Article  CAS  Google Scholar 

  6. Kirkbirde K, Tungol MW. In: Robertson J, Grieve M, editors. Infrared microspectroscopy of fibers. 2nd ed. New York: CRC; 1999.

    Google Scholar 

  7. Laing DK, Hartshorne AW, Harwood RJ. Colour measurements on single textile fibres. Forensic Sci Int. 1986;30:65–77.

    Article  CAS  Google Scholar 

  8. Markstrom LJ, Mabbott GA. Obtaining absorption spectra from single textile fibers using a liquid crystal tunable filter microspectrophotometer. Forensic Sci Int. 2011;209:108–12.

    Article  CAS  Google Scholar 

  9. Was-Gubala J, Starczak R. Nondestructive identification of dye mixtures in polyester and cotton fibers using Raman spectroscopy and ultraviolet\u2013Visible (UV–vis) microspectrophotometry. Appl Spectrosc. 2015;69(2):296–303.

    Article  CAS  Google Scholar 

  10. Was-Gubala J. Identification of thermally changed fibres. Forensic Sci Int. 1997;85(1):51–63.

    Article  Google Scholar 

  11. Ledbetter NL, Walton BL, Davila P, Hoffmann WD, Ernest RR, Verbeck GF. Nanomanipulation-coupled nanospray mass specrtrometry applied to the extraction and analysis of trace analytes found on fibers. J Forensic Sci. 2010;55(5):1219–21.

    Article  Google Scholar 

  12. Reuland DJ, Trinler WA. A comparison of lipstick smears by high performance liquid chromatography. J Forensic Sci Soc. 1980;20(2):111–20.

    Article  CAS  Google Scholar 

  13. Luongo G, Thorsén G, Östman C. Quinolines in clothing textiles—a source of human exposure and wastewater pollution? Anal Bioanal Chem. 2014;406:2747–56.

    Article  CAS  Google Scholar 

  14. Antal B, Kuki Á, Nagy L, Nagy T, Zsuga M, Kéki S. Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS). Anal Bioanal Chem. 2016;408:5189–98.

    Article  CAS  Google Scholar 

  15. Micali G, Curro P, Calabro G. High-performance liquid chromatographic separation and determination of fluorescent whitening agents in detergents. Analyst. 1984;109:155–8.

    Article  CAS  Google Scholar 

  16. Loyd JBF. Forensic significance of fluorescent brighteners: their qualitative TLC characterisation in small quantities of fibre and detergents. J Forensic Sci Soc. 1977;17(2–3):145–52.

    Article  Google Scholar 

  17. Hartshorne AW, Laing DK. Microspectrofluorimetry of fluorescent dyes and brighteners on single textile fibres: part 3—fluorescence decay phenomena. Forensic Sci Int. 1991;51:239–50.

    Article  CAS  Google Scholar 

  18. Shu W-C, Ding W-H. Determination of fluorescent whitening gents in infant clothes and paper materials by ion-pair chromatography. J Chin Chem Soc. 2009;56:797–803.

    Article  CAS  Google Scholar 

  19. Mujumdar N, Heider EC, Campiglia AD. Enhancing textile fiber identification with detergent fluorescence. Appl Spectrosc. 2015;69:1390–6.

    Article  CAS  Google Scholar 

  20. Appalaneni K, Heider EC, Moore AFT, Campiglia AD. Single fiber identification with nondestructive excitation-emission spectral cluster analysis. Anal Chem. 2014;86(14):6774–80.

    Article  CAS  Google Scholar 

  21. Martinez AM, Kak AC. PCA versus LDA. IEEE Trans Pattern Anal. 2001;23(2):228–33.

    Article  Google Scholar 

  22. Heider EC, Barhoum M, Peterson EM, Schaefer J, Harris J. Identification of single fluorescent labels using spectroscopic microscopy. Appl Spectrosc. 2010;64(1):37–45.

    Article  CAS  Google Scholar 

  23. Malinowski ER. Statistical F-tests for abstract factor analysis and target testing. J Chemom. 1988;3:49–60.

    Article  CAS  Google Scholar 

  24. Muñoz de la Peña A, Mujumdar N, Heider EC, Goicoechea HC, Muñoz de la Peña D, Campiglia AD. Nondestructive total excitation-emission fluorescence microscopy combined with multi-way chemometric analysis for visually indistinguishable single fiber discrimination. Anal Chem. 2016;88(5):2967–75.

    Article  Google Scholar 

Download references


This work was supported by the National Institute of Justice (Grant #2011-DN-BX-K553).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andres D. Campiglia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

No experiments involved research with human or animal subjects.

Additional information

ABC Highlights: authored by Rising Stars and Top Experts.

Electronic supplementary material

The Electronic Supplementary Material document contains cluster plots for all combinations of detergent pairs on acrylic and nylon fibers.


(PDF 6722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heider, E.C., Mujumdar, N. & Campiglia, A.D. Identification of detergents for forensic fiber analysis. Anal Bioanal Chem 408, 7935–7943 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: