Skip to main content
Log in

Optimization of LC-Orbitrap-HRMS acquisition and MZmine 2 data processing for nontarget screening of environmental samples using design of experiments

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Liquid chromatography–high resolution mass spectrometry (LC-HRMS) is a well-established technique for nontarget screening of contaminants in complex environmental samples. Automatic peak detection is essential, but its performance has only rarely been assessed and optimized so far. With the aim to fill this gap, we used pristine water extracts spiked with 78 contaminants as a test case to evaluate and optimize chromatogram and spectral data processing. To assess whether data acquisition strategies have a significant impact on peak detection, three values of MS cycle time (CT) of an LTQ Orbitrap instrument were tested. Furthermore, the key parameter settings of the data processing software MZmine 2 were optimized to detect the maximum number of target peaks from the samples by the design of experiments (DoE) approach and compared to a manual evaluation. The results indicate that short CT significantly improves the quality of automatic peak detection, which means that full scan acquisition without additional MS2 experiments is suggested for nontarget screening. MZmine 2 detected 75–100 % of the peaks compared to manual peak detection at an intensity level of 105 in a validation dataset on both spiked and real water samples under optimal parameter settings. Finally, we provide an optimization workflow of MZmine 2 for LC-HRMS data processing that is applicable for environmental samples for nontarget screening. The results also show that the DoE approach is useful and effort-saving for optimizing data processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–7.

    Article  CAS  Google Scholar 

  2. Hug C, Ulrich N, Schulze T, Brack W, Krauss M. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut. 2014;184:25–32.

    Article  CAS  Google Scholar 

  3. Ruff M, Mueller MS, Loos M, Singer HP. Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – identification of unknown sources and compounds. Water Res. 2015;87:145–54.

    Article  CAS  Google Scholar 

  4. Hernandez F, Ibanez M, Portoles T, Cervera MI, Sancho JV, Lopez FJ. Advancing towards universal screening for organic pollutants in waters. J Hazard Mater. 2015;282:86–95.

    Article  CAS  Google Scholar 

  5. Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397(3):943–51.

    Article  CAS  Google Scholar 

  6. Zhang W, Chang J, Lei Z, Huhman D, Sumner LW, Zhao PX. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Anal Chem. 2014;86(13):6245–53.

    Article  CAS  Google Scholar 

  7. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87.

    Article  CAS  Google Scholar 

  8. Katajamaa M, Miettinen J, Orešič M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 2006;22(5):634–6.

    Article  CAS  Google Scholar 

  9. Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 2010;11(1):395.

    Article  Google Scholar 

  10. Allen F, Greiner R, Wishart D. Competitive fragmentation modeling of ESI−MS/MS spectra for putative metabolite identification. Metabolomics. 2014;11(1):98–110.

    Article  Google Scholar 

  11. Rasche F, Scheubert K, Hufsky F, Zichner T, Kai M, Svatoš A, et al. Identifying the unknowns by aligning fragmentation trees. Anal Chem. 2012;84(7):3417–26.

    Article  CAS  Google Scholar 

  12. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinf. 2010;11(1):148.

    Article  Google Scholar 

  13. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.

    Article  CAS  Google Scholar 

  14. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;1–19.

  15. Hibbert DB. Experimental design in chromatography: a tutorial review. J Chromatogr B. 2012;910:2–13.

    Article  CAS  Google Scholar 

  16. Hecht ES, Oberg AL, Muddiman DC. Optimizing mass spectrometry analyses: a tailored review on the utility of design of experiments. J Am Soc Mass Spectrom. 2016;1–19.

  17. Livingstone D. Data analysis for chemists. Oxford: Oxford University Press; 1995.

    Google Scholar 

  18. Laures AMF, Wolff J-C, Eckers C, Borman PJ, Chatfield MJ. Investigation into the factors affecting accuracy of mass measurements on a time-of-flight mass spectrometer using design of experiment. Rapid Commun Mass Spectrom. 2007;21(4):529–35.

    Article  CAS  Google Scholar 

  19. Seto C, Bateman KP, Gunter B. Development of generic liquid chromatography-mass spectrometry methods using experimental design. J Am Soc Mass Spectrom. 2002;13(1):2–9.

    Article  CAS  Google Scholar 

  20. Gruendling T, Guilhaus M, Barner‐Kowollik C. Design of experiment (DoE) as a tool for the optimization of source conditions in SEC‐ESI‐MS of functional synthetic polymers synthesized via ATRP. Macromol Rapid Commun. 2009;30(8):589–97.

    Article  CAS  Google Scholar 

  21. Lemonakis N, Skaltsounis A-L, Tsarbopoulos A, Gikas E. Optimization of parameters affecting signal intensity in an LTQ-orbitrap in negative ion mode: a design of experiments approach. Talanta. 2016;147:402–9.

    Article  CAS  Google Scholar 

  22. Zhou Y, Song J-Z, Choi FF-K, Wu H-F, Qiao C-F, Ding L-S, et al. An experimental design approach using response surface techniques to obtain optimal liquid chromatography and mass spectrometry conditions to determine the alkaloids in Meconopsi species. J Chromatogr A. 2009;1216(42):7013–23.

    Article  CAS  Google Scholar 

  23. Zhang L, Borror CM, Sandrin TR. A designed experiments approach to optimization of automated data acquisition during characterization of bacteria with MALDI-TOF mass spectrometry. PLoS ONE. 2014;9(3):e92720.

    Article  Google Scholar 

  24. Jalali-Heravi M, Parastar H, Sereshti H. Towards obtaining more information from gas chromatography–mass spectrometric data of essential oils: an overview of mean field independent component analysis. J Chromatogr A. 2010;1217(29):4850–61.

    Article  CAS  Google Scholar 

  25. Eliasson M, Rännar S, Madsen R, Donten MA, Marsden-Edwards E, Moritz T, et al. Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach. Anal Chem. 2012;84(15):6869–76.

    Article  CAS  Google Scholar 

  26. Zheng H, Clausen MR, Dalsgaard TK, Mortensen G, Bertram HC. Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal Chem. 2013;85(15):7109–16.

    Article  CAS  Google Scholar 

  27. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinf. 2015;16(1):1–10.

    Article  CAS  Google Scholar 

  28. Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, et al. Effect-directed analysis supporting monitoring of aquatic environments—an in-depth overview. Sci Total Environ. 2016;544:1073–118.

    Article  CAS  Google Scholar 

  29. MZmine Development Team. MZmine 2.10 manual. 2005–2012.

  30. Lenth RV. rsm. 2.07 ed, 2014.

Download references

Acknowledgments

The authors gratefully acknowledge the support by the European Marie Curie Initial Training Network EDA-EMERGE (grant agreement no. 290100), the European FP7 Collaborative Project SOLUTIONS (grant agreement no. 603437). MH was support by EDA-EMERGE (ESR09) and the HIGRADE Graduate School of the Helmholtz Centre for Environmental Research–UFZ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Hu or Tobias Schulze.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Krauss, M., Brack, W. et al. Optimization of LC-Orbitrap-HRMS acquisition and MZmine 2 data processing for nontarget screening of environmental samples using design of experiments. Anal Bioanal Chem 408, 7905–7915 (2016). https://doi.org/10.1007/s00216-016-9919-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9919-8

Keywords

Navigation