Analytical and Bioanalytical Chemistry

, Volume 408, Issue 28, pp 8133–8147 | Cite as

Understanding paper degradation: identification of products of cellulosic paper decomposition at the wet-dry “tideline” interface using GC-MS

Research Paper

Abstract

Cellulose paper degradation products forming in the “tideline” area at the wet-dry interface of pure cellulose paper were analyzed using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) and high-resolution electrospray ionization-mass spectrometry (ESI-MS, LTQ Orbitrap) techniques. Different extraction protocols were employed in order to solubilize the products of oxidative cellulose decomposition, i.e., a direct solvent extraction or a more laborious chromophore release and identification (CRI) technique aiming to reveal products responsible for paper discoloration in the tideline area. Several groups of low molecular weight compounds were identified, suggesting a complex pathway of cellulose decomposition in the tidelines formed at the cellulose-water-oxygen interface. Our findings, namely the appearance of a wide range of linear saturated carboxylic acids (from formic to nonanoic), support the oxidative autocatalytic mechanism of decomposition. In addition, the identification of several furanic compounds (which can be, in part, responsible for paper discoloration) plus anhydro carbohydrate derivatives sheds more light on the pathways of cellulose decomposition. Most notably, the mechanisms of tideline formation in the presence of molecular oxygen appear surprisingly similar to pathways of pyrolytic cellulose degradation. More complex chromophore compounds were not detected in this study, thereby revealing a difference between this short-term tideline experiment and longer-term cellulose aging.

Keywords

Cellulose degradation Tideline Chromophores Paper conservation 

Supplementary material

216_2016_9916_MOESM1_ESM.pdf (232 kb)
ESM 1(PDF 231 kb)

References

  1. 1.
    Bone WH. Evaporation of water from cellulose. J Soc Dyer Colour. 1934;50:307–9.Google Scholar
  2. 2.
    Bone WA, Turner HA. Some effects of the evaporation of water from cotton cellulose. J Soc Dyer Colour. 1950;66:315–27.CrossRefGoogle Scholar
  3. 3.
    Bogaty H, Campbell KS, Appel WD. Some observations on the evaporation of water from cellulose. Text Res J. 1952;22:75–81.CrossRefGoogle Scholar
  4. 4.
    Madaras GW, Turner HA. Further observations on the effects of evaporating water from cotton cellulose. J Soc Dyer Colour. 1953;69:371–7.CrossRefGoogle Scholar
  5. 5.
    Schaffer R, Appel WD, Forziati FH. Reactions at wet-dry interfaces on fibrous materials. J Res Natl Bur Stand. 1955;54:103–6.CrossRefGoogle Scholar
  6. 6.
    Fox MR. Wet and dry boundaries on cellulosic textiles and their influence on dyes and dyeing. I. J Soc Dyer Colour. 1965;81:7–11.CrossRefGoogle Scholar
  7. 7.
    Dupont AL. Degradation of cellulose at the wet/dry interface. I. The effect of some conservation treatments on brown lines. Restaurator. 1996;17:1–21.Google Scholar
  8. 8.
    Dupont AL. Degradation of cellulose at the wet/dry interface. II. An approach to the identification of the oxidation compounds. Restaurator. 1996;17:145–64.Google Scholar
  9. 9.
    Area MC, Cheradame H. Paper aging and degradation: recent findings and research methods. BioResources. 2011;6:5307–37.Google Scholar
  10. 10.
    Souguir Z, Dupont AL. Formation of brown lines in paper: characterization of cellulose degradation at the wet-dry interface. Biomacromolecules. 2008;9:2546–52.CrossRefGoogle Scholar
  11. 11.
    Jeong MJ, Dupont AL, René de la Rie E. Degradation of cellulose at the wet-dry interface. I. Study of the depolymerization. Cellulose. 2012;19:1135–47.CrossRefGoogle Scholar
  12. 12.
    Jeong MJ, Dupont AL, René de la Rie E. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants. Carbohydr Polym. 2014;101:671–83.CrossRefGoogle Scholar
  13. 13.
    Zervos S. Natural and accelerated ageing of cellulose and paper: a literature review. In: Lejeune A, Deprez T, editors. Cellulose: structure and properties, derivatives and industrial uses. New York: Nova Science Publishers Inc.; 2010. p. 155–203.Google Scholar
  14. 14.
    Albeck M, Ben-Bassat A, Epstein JA, Lewin M. The yellowing of cotton cellulose. Part I. A new method for the determination of yellowing. Text Res J. 1965;35:836–43.CrossRefGoogle Scholar
  15. 15.
    Albeck M, Ben-Bassat A, Lewin M. The yellowing of cotton cellulose. Part II. The influence of functional groups and the nature of the yellowing. Text Res J. 1965;35:935–42.CrossRefGoogle Scholar
  16. 16.
    Lewin M. The yellowing of cotton cellulose. Part III. On the mechanism of yellowing upon aging and alkaline extraction. Text Res J. 1965;35:979–86.CrossRefGoogle Scholar
  17. 17.
    Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM. Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab. 2005;88:512–20.CrossRefGoogle Scholar
  18. 18.
    Łojewska J, Missori M, Lubańska A, Grimaldi P, Zięba K, Proniewicz LM, et al. Carbonyl groups development on degraded cellulose. Correlation between spectroscopic and chemical results. Appl Phys A. 2007;89:883–7.CrossRefGoogle Scholar
  19. 19.
    Łojewski T, Zięba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J. Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A. 2010;100:809–21.CrossRefGoogle Scholar
  20. 20.
    Schedl A, Korntner P, Zweckmair T, Henniges U, Rosenau T, Potthast A. Detection of cellulose-derived chromophores by ambient ionization-MS. Anal Chem. 2016;88:1253–8.CrossRefGoogle Scholar
  21. 21.
    Corsaro C, Mallamace D, Łojewska J, Mallamace F, Pietronero L, Missori M. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy. Sci Rep. 2013;3:2896.CrossRefGoogle Scholar
  22. 22.
    Mosca Conte A, Pulci O, Knapik A, Bagniuk J, Del Sole R, Lojewska J, et al. Role of cellulose oxidation in the yellowing of ancient paper. Phys Rev Lett. 2012;108:158301.CrossRefGoogle Scholar
  23. 23.
    Violante C, Teodonio L, Mosca Conte A, Pulci O, Kupchak I, Missori M. An ab-initio approach to cultural heritage: the case of ancient paper degradation. Phys Status Solidi B. 2015;252:112–7.CrossRefGoogle Scholar
  24. 24.
    Rosenau T, Potthast A, Milacher W, Hofinger A, Kosma P. Isolation and identification of residual chromophores in cellulosic materials. Polymer. 2004;45:6437–43.CrossRefGoogle Scholar
  25. 25.
    Rosenau T, Potthast A, Krainz K, Yoneda Y, Dietz T, Shields ZPI, et al. Chromophores in cellulosics. VI. First isolation and identification of residual chromophores from aged cotton linters. Cellulose. 2011;18:1623–33.CrossRefGoogle Scholar
  26. 26.
    Rosenau T, Potthast A, Krainz K, Hettegger H, Henniges U, Yoneda Y, et al. Chromophores in cellulosics. XI. Isolation and identification of residual chromophores from bacterial cellulose. Cellulose. 2014;21:2271–83.CrossRefGoogle Scholar
  27. 27.
    Strlič M, Kralj Cigić I, Kolar J, de Bruin G, Pihlar B. Non-destructive evaluation of historical paper based on pH estimation from VOC emissions. Sensors. 2007;7:3136–45.CrossRefGoogle Scholar
  28. 28.
    Lattuati-Derieux A, Bonnassies-Termes S, Lavédrine B. Characterisation of compounds emitted during natural and artificial ageing of a book. Use of headspace-solid-phase microextraction/gas chromatography/mass spectrometry. J Cult Herit. 2006;7:123–33.CrossRefGoogle Scholar
  29. 29.
    Ramalho O, Dupont AL, Egasse C, Lattuati-Derieux A. Emission rates of volatile organic compounds from paper. e-Preserv Sci. 2009;6:53–9.Google Scholar
  30. 30.
    Dupont AL, Egasse C, Mori A, Vasseur F. Comprehensive characterisation of cellulose- and lignocellulose-degradation products in aged papers: capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives. Carbohydr Polym. 2007;68:1–16.CrossRefGoogle Scholar
  31. 31.
    Shahani CJ, Harrison G. Spontaneous formation of acids in the natural aging of paper. In: Daniels V, Donithorne A, Smith P, editors. Works of art on paper, books, documents and photographs. Techniques and conservation, Congress of the International Institute for Conservation. London: International Institute for Conservation; 2002. p. 189–92.Google Scholar
  32. 32.
    Deng T, Liu H. Direct conversion of cellulose into acetol on bimetallic Ni-SnOx/Al2O3 catalysts. J Mol Catal A Chem. 2014;388–389:66–73.CrossRefGoogle Scholar
  33. 33.
    Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed. 2008;47:8510–3.CrossRefGoogle Scholar
  34. 34.
    Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:20097–107.CrossRefGoogle Scholar
  35. 35.
    Shenai VA, Sudan RK. Studies in chemically modified celluloses. IV. Lactones in chemically modified celluloses. J Appl Polym Sci. 1972;16:545–50.CrossRefGoogle Scholar
  36. 36.
    Potthast A, Rosenau T, Kosma P. Analysis of oxidized functionalities in cellulose. Adv Polym Sci. 2006;205:1–48.CrossRefGoogle Scholar
  37. 37.
    Tressl R, Kersten E. Formation of pyrroles, 2-pyrrolidones, and pyridones by heating of 4-aminobutyric acid and reducing sugars. J Agric Food Chem. 1993;41:2125–30.CrossRefGoogle Scholar
  38. 38.
    Popoff T, Theander O. Formation of aromatic compounds from carbohydrates. Part I. Reaction of D-glucuronic acid, D-galacturonic acid, D-xylose, and L-arabinose in slightly acidic, aqueous solution. Carbohydr Res. 1972;22:135–49.CrossRefGoogle Scholar
  39. 39.
    Lu Q, Yang XC, Dong CQ, Zhang ZF, Zhan XM, Zhu XF. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis. 2011;92:430–8.CrossRefGoogle Scholar
  40. 40.
    Paine III JB, Pithawalla YB, Naworal JD. Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 4. The pyrolysis of D-glucose: the formation of furans. J Anal Appl Pyrolysis. 2008;83:37–63.CrossRefGoogle Scholar
  41. 41.
    Patwardhan PR, Satrio JA, Brown RC, Shanks BH. Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrolysis. 2009;86:323–30.CrossRefGoogle Scholar
  42. 42.
    Lu Q, Zhang ZF, Dong CQ, Zhu XF. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies. 2010;3:1805–20.CrossRefGoogle Scholar
  43. 43.
    Pierson Y, Bobbink F, Yan N. Alcohol mediated liquefaction of lignocellulosic materials: a mini review. Chem Eng Process Technol. 2013;1:1014.Google Scholar
  44. 44.
    Alonso DM, Gallo JMR, Mellmer MA, Wettstein SG, Dumesic JA. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Technol. 2013;3:927–31.CrossRefGoogle Scholar
  45. 45.
    Halpern Y, Riffer R, Broido A. Levoglucosenone (1,6-anhydro-3,4-dideoxy-Δ3-β-D-pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem. 1973;38:204–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM)Sorbonne UniversitésParis Cedex 05France
  2. 2.Centre de Recherche sur la Conservation des Collections (CRC, USR 3224), Muséum National d’Histoire Naturelle, Ministère de la culture et de la communication, CNRSSorbonne UniversitésParisFrance

Personalised recommendations