Analytical and Bioanalytical Chemistry

, Volume 408, Issue 27, pp 7689–7697 | Cite as

Methodology for trace analysis of 17 pyrethroids and chlorpyrifos in foodstuff by gas chromatography–tandem mass spectrometry

  • Alexsandro Dallegrave
  • Tânia Mara PizzolatoEmail author
  • Fabiano Barreto
  • Ethel Eljarrat
  • Damià Barceló
Research Paper


This study aimed to develop an efficient, sensitive, and reliable analytical method for trace analysis of 17 different pyrethroids and chlorpyrifos in the fatty content of animal products, including beef, chicken, eggs, fish, and milk. The method developed is based on an ultrasound extraction using lyophilized samples, a solid phase extraction cleanup with basic alumina and C18 cartridges in tandem, and analysis by gas chromatography coupled to tandem mass spectrometry in negative chemical ionization mode. Recovery values were in the range of 27–128 % with relative standard deviation always below 25 %, and chiral analysis of recovery data showed predominance of isomers of cis form over trans. Limits of detection (LODs) ranged from 0.002 to 6.43 ng g−1 lipid weight (lw), and limits of quantification (LOQs) ranged between 0.006 and 21.4 ng g−1 lw. The developed methodology was used for the analysis of 25 samples of fatty foods. All samples were positive for at least one of the pesticides, chlorpyrifos, bifenthrin, cyhalothrin, permethrin, cypermethrin, or deltamethrin, with mass fraction levels ranging from 0.03 to 270 ng g−1 lw.

Graphical Abstract


Pyrethroid analysis Negative chemical ionization tandem mass spectrometry Isomeric factor Fat food 



This research was funded by the CAPES, CNPq and Ministerio da Agricultura. To Ciencias sem Fronteiras, CAPES, for the sandwich scholarship, for Alexsandro Dallegrave. This work has also been supported by the Generalitat de Catalunya (Consolidated Research Groups “2014 SGR 418 - Water and Soil Quality Unit”). Biotage is acknowledged for SPE cartridges.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9865_MOESM1_ESM.pdf (522 kb)
ESM 1 (PDF 521 kb)


  1. 1.
    Elliott M, Janes NF, Potter C. Future of pyrethroids in insect control. Annu Rev Entomol. 1978;23:443–69. doi: 10.1146/annurev.en.23.010178.002303.CrossRefGoogle Scholar
  2. 2.
    Perez-Fernandez V, Garcia MA, Marina ML. Characteristics and enantiomeric analysis of chiral pyrethroids. J Chromatogr A. 2010;1217(7):968–89.CrossRefGoogle Scholar
  3. 3.
    Boonchiangma S, Ngeontae W, Srijaranai S. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Talanta. 2012;88:209–15.CrossRefGoogle Scholar
  4. 4.
    Lestremau F, Willemin ME, Chatellier C, Desmots S, Brochot C. Determination of cis-permethrin, trans-permethrin and associated metabolites in rat blood and organs by gas chromatography-ion trap mass spectrometry. Anal Bioanal Chem. 2014;406(14):3477–87. doi: 10.1007/s00216-014-7774-z.CrossRefGoogle Scholar
  5. 5.
    Mudiam MKR, Jain R, Singh A, Khan HA, Parmar D. Development of ultrasound-assisted dispersive liquid-liquid microextraction-large volume injection-gas chromatography-tandem mass spectrometry method for determination of pyrethroid metabolites in brain of cypermethrin-treated rats. Forensic Toxicol. 2014;32(1):19–29. doi: 10.1007/s11419-013-0196-3.CrossRefGoogle Scholar
  6. 6.
    Wu C, Feng C, Qi X, Wang G, Zheng M, Chang X, et al. Urinary metabolite levels of pyrethroid insecticides in infants living in an agricultural area of the province of Jiangsu in China. Chemosphere. 2013;90(11):2705–13.CrossRefGoogle Scholar
  7. 7.
    Liu ZB, Jia FY, Wang WW, Gao FK, Liu PP, Liu YM, et al. A highly efficient extraction, separation and detection method for pyrethroids in pork using the interaction between pyrethroids and protein. Anal Methods. 2014;6(5):1353–8. doi: 10.1039/c3ay40258d.CrossRefGoogle Scholar
  8. 8.
    McCarthy AR, Thomson BM, Shaw IC, Abell AD. Estrogenicity of pyrethroid insecticide metabolites. J Environ Monitor. 2006;8(1):197–202. doi: 10.1039/b511209e.CrossRefGoogle Scholar
  9. 9.
    Sun H, Chen W, Xu X, Ding Z, Chen X, Wang X. Pyrethroid and their metabolite, 3-phenoxybenzoic acid showed similar (anti)estrogenic activity in human and rat estrogen receptor alpha-mediated reporter gene assays. Environ Toxicol Phar. 2014;37(1):371–7.CrossRefGoogle Scholar
  10. 10.
    Sun H, Xu X-L, Xu L-C, Song L, Hong X, Chen J-F, et al. Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere. 2007;66(3):474–9.CrossRefGoogle Scholar
  11. 11.
    Deguchi Y, Yamada T, Hirose Y, Nagahori H, Kushida M, Sumida K, et al. Mode of action analysis for the synthetic pyrethroid metofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyte proliferation. Toxicol Sci. 2009;108(1):69–80. doi: 10.1093/toxsci/kfp006.CrossRefGoogle Scholar
  12. 12.
    Ray DE, Fry JR. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Therapeut. 2006;111(1):174–93.CrossRefGoogle Scholar
  13. 13.
    Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, et al. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 2002;171(1):3–59. doi: 10.1016/s0300-483x(01)00569-8.CrossRefGoogle Scholar
  14. 14.
    PPDB. Pesticide Properties DataBase. Accessed 06 Jul 2016.
  15. 15.
  16. 16.
  17. 17.
    Khay S, El-Aty AMA, Choi J-H, Shin E-H, Shin H-C, Kim J-S, et al. Simultaneous determination of pyrethrolds from pesticide residues in porcine muscle and pasteurized milk using GC. J Sep Sci. 2009;32(2):244–51.CrossRefGoogle Scholar
  18. 18.
    Meneghini LZ, Rubensam G, Bica VC, Ceccon A, Barreto F, Ferrao MF, et al. Multivariate optimization for extraction of pyrethroids in milk and validation for GC-ECD and CG-MS/MS analysis. I JERPH. 2014;11(11):11421–37. doi: 10.3390/ijerph111111421.Google Scholar
  19. 19.
    Jia FY, Wang WW, Wang J, Yin JA, Liu YM, Liu ZB. New strategy to enhance the extraction efficiency of pyrethroid pesticides in fish samples using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method. Anal Methods. 2012;4(2):449–53. doi: 10.1039/c2ay05681j.CrossRefGoogle Scholar
  20. 20.
    Brondi SHG, De Macedo AN, de Souza GB, Nogueira ARA. Application of QuEChERS method and gas chromatography–mass spectrometry for the analysis of cypermethrin residue in milk. J Environ Sci and Heal B. 2011;46(8):671–7.Google Scholar
  21. 21.
    dos Reis Souza MR, Moreira CO, de Lima TG, Aquino A, Dorea HS. Validation of a matrix solid phase dispersion (MSPD) technique for determination of pesticides in lyophilized eggs of the chicken Gallus gallus domesticus. Microchem J. 2013;110:395–401.CrossRefGoogle Scholar
  22. 22.
    Shamsipur M, Yazdanfar N, Ghambarian M. Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chem. 2016;204:289–97.CrossRefGoogle Scholar
  23. 23.
    Feo ML, Eljarrat E, Barcelo D. Performance of gas chromatography/tandem mass spectrometry in the analysis of pyrethroid insecticides in environmental and food samples. Rapid Commun Mass Sp. 2011;25(7):869–76. doi: 10.1002/rcm.4936.CrossRefGoogle Scholar
  24. 24.
    Goulart SM, de Queiroz MELR, Neves AA, de Queiroz JH. Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection. Talanta. 2008;75(5):1320–3.CrossRefGoogle Scholar
  25. 25.
    Corcellas C, Eljarrat E, Barcelo D. First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int. 2015;75:110–6.CrossRefGoogle Scholar
  26. 26.
    Corcellas C, Luisa Feo M, Paulo Torres J, Malm O, Ocampo-Duque W, Eljarrat E, et al. Pyrethroids in human breast milk: occurrence and nursing daily intake estimation. Environ Int. 2012;47:17–22.CrossRefGoogle Scholar
  27. 27.
    Tanaka T, Hori T, Asada T, Oikawa K, Kawata K. Simple one-step extraction and cleanup by pressurized liquid extraction for gas chromatographic-mass spectrometric determination of pesticides in green leafy vegetables. J Chromatogr A. 2007;1175(2):181–6.CrossRefGoogle Scholar
  28. 28.
    Shen CY, Cao XW, Shen WJ, Jiang YA, Zhao ZY, Wu B, et al. Determination of 17 pyrethroid residues in troublesome matrices by gas chromatography/mass spectrometry with negative chemical ionization. Talanta. 2011;84(1):141–7.CrossRefGoogle Scholar
  29. 29.
    Deme P, Azmeera T, Devi BLAP, Jonnalagadda PR, Prasad RBN, Sarathi UVRV. An improved dispersive solid-phase extraction clean-up method for the gas chromatography-negative chemical ionisation tandem mass spectrometric determination of multiclass pesticide residues in edible oils. Food Chem. 2014;142:144–51.CrossRefGoogle Scholar
  30. 30.
    Huskova R, Matisova E, Hrouzkova S, Svorc L. Analysis of pesticide residues by fast gas chromatography in combination with negative chemical ionization mass spectrometry. J Chromatogr A. 2009;1216(35):6326–34.CrossRefGoogle Scholar
  31. 31.
    SANCO. European Commission DG-SANCO, Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residue Analysis in Food and Feed. No. SANCO/12571/2013.
  32. 32.
    Corcellas C, Eljarrat E, Barcelo D. Enantiomeric-selective determination of pyrethroids: application to human samples. Anal Bioanal Chem. 2015;407(3):779–86. doi: 10.1007/s00216-014-7905-6.CrossRefGoogle Scholar
  33. 33.
    Albaseer SS, Rao RN, Swamy YV, Mukkanti K. Analytical artifacts, sample handling and preservation methods of environmental samples of synthetic pyrethroids. Trac-Trend Anal Chem. 2011;30(11):1771–80.CrossRefGoogle Scholar
  34. 34.
    Stefanelli P, Santilio A, Cataldi L, Dommarco R. Multiresidue analysis of organochlorine and pyrethroid pesticides in ground beef meat by gas chromatography–mass spectrometry. J Environ Sci and Heal B. 2009;44(4):350–6. doi: 10.1080/03601230902801000.CrossRefGoogle Scholar
  35. 35.
    Jin Y, Liu J, Wang L, Chen R, Zhou C, Yang Y, et al. Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice. Environ Int. 2012;42:144–51.CrossRefGoogle Scholar
  36. 36.
    Maffei DF, de Araujo Nogueira AR, Govoni Brondi SH. Pesticide residue determination in cattle plasma by gas chromatography–mass spectrometry. Quim Nova. 2009;32(7):1713–6.CrossRefGoogle Scholar
  37. 37.
    Gomes A, Koller WW, de Barros At M. Susceptibility of Rhipicephalus (Boophilus) microplus to acaricides in Mato Grosso do Sul, Brazil. Cienc Rural. 2011;41(8):1447–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexsandro Dallegrave
    • 1
  • Tânia Mara Pizzolato
    • 1
    Email author
  • Fabiano Barreto
    • 2
  • Ethel Eljarrat
    • 3
  • Damià Barceló
    • 3
  1. 1.Instituto de QuímicaUniversidade Federal do Rio Grande do Sul - UFRGSPorto AlegreBrazil
  2. 2.Laboratório Nacional Agropecuário - LANAGRO/RSPorto AlegreBrazil
  3. 3.Department of Environmental Chemistry, IDAEA-CSICBarcelonaSpain

Personalised recommendations