Skip to main content
Log in

A total analytical system featuring a novel solid–liquid extraction chamber for solid sample flow analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a total flow analysis system based on a novel solid–liquid extraction chamber is presented. This strategy enables all the main experimental procedures for the analysis of a solid sample to be performed automatically: enrichment of the liquid extract, sample treatment, filtration of the liquid extract from the solid sample, directing the extract towards detection, and finally cleansing of the chamber for the following solid sample to be analyzed. The chamber designed to be incorporated in the flow manifold presents two main features: it accommodates stirring bars for enhancing the extraction process, and it presents replaceable solid sample containers (a spare part of the solid–liquid extraction chamber) to easily replace the solid sample and therefore enhance sample analysis throughput. The chamber performance was assessed using two different solid samples, an ion exchanger resin and vegetable samples, focussing on proton and nitrate ion extraction, respectively. The main figures of merit achieved were relative standard deviation (RSD) and relative error values below 7 % for all determinations. The determination rate for vegetable samples was ca. 12 samples h−1. The proposed strategy may be exploited to perform automatically the analysis of solid samples as it embodies a simple automatic strategy of a very important but time-consuming and laborious analytical operation.

TAS for solid liquid extraction and nitrate potentiometric determination of vegetable samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kolev S, Mckelvie I. Advances in flow injection analysis and related techniques. 1st ed. Amsterdan: Elsevier; 2008.

    Google Scholar 

  2. Santos JR, Rangel AOSS. Development of a chromatographic low pressure flow injection system using amperometric detection: application to the analysis of niacin in coffee. Food Chem. 2015;187:152–8. doi:10.1016/j.foodchem.2015.04.093.

    Article  CAS  Google Scholar 

  3. Boonjob W, Miró M, Kolev SD. On-line speciation analysis of inorganic arsenic in complex environmental aqueous samples by pervaporation sequential injection analysis. Talanta. 2013;117:8–13. doi:10.1016/j.talanta.2013.08.032.

    Article  CAS  Google Scholar 

  4. Maya F, Estela JM, Cerdà V. Improving the chemiluminescence-based determination of sulphide in complex environmental samples by using a new, automated multi-syringe flow injection analysis system coupled to a gas diffusion unit. Anal Chim Acta. 2007;601:87–94. doi:10.1016/j.aca.2007.08.030.

    Article  CAS  Google Scholar 

  5. Araujo ARTS, Saraiva MLMFS, Lima JLFC, Korn MGA. Flow methodology for methanol determination in biodiesel exploiting membrane-based extraction. Anal Chim Acta. 2008;613:177–83. doi:10.1016/j.aca.2008.03.005.

    Article  CAS  Google Scholar 

  6. Kubáň V. Continuous precipitation techniques in flow injection analysis—a review. Fresenius J Anal Chem. 1993;346:873–81. doi:10.1007/BF00322743.

    Article  Google Scholar 

  7. Ballesteros E, Angel R, Valcárcel M. Integrated automatic determination of nitrate, ammonium and organic carbon in soil samples. Analyst. 1997;122:309–13.

    Article  CAS  Google Scholar 

  8. Dong LM, Yan XP. On-line coupling of flow injection sequential extraction to hydride generation atomic fluorescence spectrometry for fractionation of arsenic in soils. Talanta. 2005;65:627–31. doi:10.1016/j.talanta.2004.07.028.

    Article  CAS  Google Scholar 

  9. Jimoh M, Frenzel W, Müller V, Stephanowitz H, Hoffmann E. Development of a hyphenated microanalytical system for the investigation of leaching kinetics of heavy metals in environmental samples. Anal Chem. 2004;76:1197–203. doi:10.1021/ac034752y.

    Article  CAS  Google Scholar 

  10. Miró M, Frenzel W. The potential of microdialysis as an automatic sample-processing technique for environmental research. TrAC - Trends Anal Chem. 2005;24:324–33. doi:10.1016/j.trac.2004.10.004.

    Article  Google Scholar 

  11. Fedotov PS, Bauer C, Popp P, Wennrich R. Dynamic extraction in rotating coiled columns, a new approach to direct recovery of polycyclic aromatic hydrocarbons from soils. J Chromatogr A. 2004;1023:305–9. doi:10.1016/j.chroma.2003.10.022.

    Article  CAS  Google Scholar 

  12. Chomchoei R, Hansen EH, Shiowatana J. Utilizing a sequential injection system furnished with an extraction microcolumn as a novel approach for executing sequential extractions of metal species in solid samples. Anal Chim Acta. 2004;526:177–84. doi:10.1016/j.aca.2004.09.043.

    Article  CAS  Google Scholar 

  13. Tiyapongpattana W, Pongsakul P, Shiowatana J, Nacapricha D. Sequential extraction of phosphorus in soil and sediment using a continuous-flow system. Talanta. 2004;62:765–71. doi:10.1016/j.talanta.2003.09.018.

    Article  CAS  Google Scholar 

  14. Kurosaki H, Asbury SML, Navatril JD, Clark SB. Flow-through sequential extraction approach developed from a batch extraction method. Environ Sci Technol. 2002;36:4880–5. doi:10.1021/es020653a.

    Article  Google Scholar 

  15. Luque-Pérez E, Rios A, Valcárcel M, Danielsson LG, Ingman F. Analysis of solid samples using supported liquid membranes: a method for the evaluation of the release of nicotine from Swedish snuff. Anal Chim Acta. 1999;387:155–64.

    Article  Google Scholar 

  16. Merusi C, Corradini C, Cavazza A, Borromei C, Salvadeo P. Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal. Food Chem. 2010;120:615–20. doi:10.1016/j.foodchem.2009.10.035.

    Article  CAS  Google Scholar 

  17. Novaes HB, Vaitsman DS, Dutra PB, Pérez DV. Determination of nitrate in lettuce by ion chromatography after microwave water extraction. Quim Nova. 2009;32:1647–50. doi:10.1590/S0100-40422009000600049.

    Article  CAS  Google Scholar 

  18. Castanheira I, Oliveira L, Valente A, Alvito P, Costa HS, Alink A. The need for reference materials when monitoring nitrate intake. Anal Bioanal Chem. 2004;378:1232–8. doi:10.1007/s00216-003-2382-3.

    Article  CAS  Google Scholar 

  19. Salomez J, Hofman G. Nitrate extraction from fresh plant material by means of a methanol:water extraction solution. Commun Soil Sci Plant Anal. 2002;33:3397–404. doi:10.1081/CSS-120014533.

    Article  CAS  Google Scholar 

  20. Santos JR, Santos JLM, Lima JLFC. Single interface flow system with potentiometric detection for the determination of nitrate in water and vegetables. Talanta. 2010;80:1326–32. doi:10.1016/j.talanta.2009.09.031.

    Article  CAS  Google Scholar 

  21. Alonso-Chamarro J, Bartrolí J, Jun S, Lima JLFC, Montenegro MCBSM. Sequential determination of calcium and nitrate ions in waters by potentiometric flow injection. Analyst. 1993;118:1527–32.

    Article  CAS  Google Scholar 

  22. (1997) Foodstuffs—determination of nitrate and/or nitrite content—part 2: HPLC/IC method for the determination of nitrate content of vegetables and vegetable products. Eur Stand. 1997;12014–2 . doi: 10.1017/CBO9781107415324.004.

  23. Lin PKT, Araujo AN, Montenegro MCBSM, Perez-Olmos R. New PVC nitrate-selective electrode: application to vegetables and mineral waters. J Agric Food Chem. 2005;53:211–5. doi:10.1021/jf049227u.

    Article  CAS  Google Scholar 

  24. Miller JN, Miller JC. Chemometrics for analytical chemistry. 5th ed. Prentice Hall: Pearson; 2005.

    Google Scholar 

Download references

Acknowledgments

Andrea C. Galvis-Sánchez and João Rodrigo Santos acknowledge the grants SFRH/BPD/37890/2007 and SFRH/BPD/63492/2009 funded by QREN, POPH, FSE, and MCTES. The authors also acknowledge financial support from National Funds (FCT) through project UID/Multi/50016/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Rodrigo Santos.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvis-Sánchez, A.C., Santos, J.R. & Rangel, A.O.S.S. A total analytical system featuring a novel solid–liquid extraction chamber for solid sample flow analysis. Anal Bioanal Chem 408, 7651–7661 (2016). https://doi.org/10.1007/s00216-016-9858-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9858-4

Keywords

Navigation