Skip to main content
Log in

Fiber-based monolithic columns for liquid chromatography

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale.

Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ladisch MR, Bioseparations engineering: principles, practice, and economics. 1-5, 223-226, 280-283, 401-414, 515-518, 628-629, New York, 2001.

  2. Yang Y, Velayudhan A, Ladisch CM, Ladisch MR. Protein chromatography using a continuous stationary phase. J Chromatogr A. 1992;598:169–80.

    Article  CAS  Google Scholar 

  3. Svec F, Huber CG. Monolithic materials promises, challenges, achievements. Anal Chem. 2006;78(7):2101–7.

    Article  Google Scholar 

  4. Svec F. Organic polymer monoliths as stationary phases for capillary HPLC. J Sep Sci. 2004;27(17–18):1419–30.

    Article  CAS  Google Scholar 

  5. Cabrera K. Applications of silica-based monolithic HPLC columns. J Sep Sci. 2004;27(10–11):843–52.

    Article  CAS  Google Scholar 

  6. Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73.

    Article  CAS  Google Scholar 

  7. Saba SA, Mousavi MPS, Buhlmann P, Hillmyer MA. Hierarchically porous polymer monoliths by combining controlled macro- and micro-phase separation. J Am Chem Soc. 2015;137:8896–9.

    Article  CAS  Google Scholar 

  8. Marcus RK. Use of polymer fiber stationary phases for liquid chromatography separations: Part II–applications. J Sep Sci. 2009;32(5–6):695–705.

    CAS  Google Scholar 

  9. Globelnewswire.com. Research and markets, global prepacked chromatography columns market 2015-2019 – analysis and forcasts for the $2.1 billion industry; 2015 [updated 22 July, 2015]. Available from: https://globenewswire.com/news-release/2015/07/22/754055/0/en/Global-Prepacked-Chromatography-ColumnsMarket-2015-2019-Analysis-and-Forecasts-for-the-2-1-Billion-Industry.html. Access date: 1 Feb, 2016.

  10. Kubo T, Watanabe F, Kaya K, Hosoya K. High throughput on-line preconcentration using spongy-monolith, prepared by Pore Templates. Chem Lett. 2008;37(9):950–1.

    Article  CAS  Google Scholar 

  11. Watanabe F, Kubo T, Kaya K, Hosoya K. Novel separation medium spongy monolith for high throughput analyses. J Chromatogr A. 2009;1216(44):7402–8.

    Article  CAS  Google Scholar 

  12. Tanigawa T, Kato K, Watabe Y, Kubo T, Hosoya K. Retention properties of macroporous spongy monolith and its application for concentration of polyaromatic hydrocarbons. J Sep Sci. 2011;34(16‐17):2193–8.

    CAS  Google Scholar 

  13. Singh A, Pinto NG. Polymeric short-fiber chromatographic supports for downstream processing of biomolecules. React Polym. 1995;24(3):229–42.

    Article  CAS  Google Scholar 

  14. Chen LQ, Zhang W, Zhen Z. Study of ion chromatography with ion-exchange fibers as the stationary phase. J Chromatogr A. 1996;740(2):195–9.

    Article  Google Scholar 

  15. Gavara PR, Bibi NS, Sanchez ML, Grasselli M, Fernandex-Lahore M. Processes, chromatographic characterization and process performance of column-packed anion exchange fibrous adsorbents for high throughput and high capacity. 2015;3: 204–221.

  16. Sonoda A, Makita Y Hirotsu T. Boron isotope fractionation in column chromatography with glucamine type fibers. J Nucl Sci Technol. 2008;(Supplement 6): 117-121.

  17. Huang TT, Taylor DG, Sedlak M, Mosier NS, Ladisch MR. Microfiber-directed boundary flow in press-fit microdevices fabricated from self-adhesive hydrophobic surfaces. Anal Chem. 2005;77(11):3671–5.

    Article  CAS  Google Scholar 

  18. Huang TT, Taylor DG, Lim K-S, Sedlak M, Bashir R, Mosier NS, et al. Surface-directed boundary flow in microfluidic channels. Langmuir. 2006;22:6429–37.

    Article  CAS  Google Scholar 

  19. Huang TT, Chang WJ, Akin D, Gomez R, Bashir R, Mosier NS, et al. Microfiber assisted fabrication of microfluidic channels using poly (dimethylsiloxane). AIChE J. 2003;49(11):2984–7.

    Article  CAS  Google Scholar 

  20. Huang TT, Mosier NS, Ladisch MR. Surface engineering of microchannel walls for protein separation and directed microfluidic flow. J Sep Sci. 2006;29:1733–42.

    Article  CAS  Google Scholar 

  21. Huang TT, Geng T, Akin D, Chang WJ, Sturgis J, Bashir R, et al. Micro-assembly of functionalized particulate monolayer on C18-derivatized SiO2 surfaces. Biotechnol Bioeng. 2003;83(4):416–27.

    Article  CAS  Google Scholar 

  22. Kiso Y, Takayama K, Jinno K. Cellulose acetate as stationary phase in microcolumn LC. J High Resolut Chromatogr. 1989;12(3):169–73.

    Article  CAS  Google Scholar 

  23. Kiso Y, Jinno K, Nagoshi T. Liquid chromatography in a capillary packed with fibrous cellulose acetate. J High Resolut Chromatogr. 1986;9(12):763–4.

    Article  CAS  Google Scholar 

  24. Hashemi-Moghaddam H, Jedi DJ. Solid-phase microextraction of chlorpyrifos in fruit samples by synthesised monolithic molecularly imprinted polymer fibres. Int J Environ Anal Chem. 2015;95(1):33–44.

    Article  CAS  Google Scholar 

  25. Diaz-Bao M, Barreiro R, Miranda JM, Cepeda A, Regal P. Recent advances and uses of monolithic columns for analysis of residues and contaminants in foods. Chromatography. 2015;2:79–95.

    Article  CAS  Google Scholar 

  26. Ding H, Cussler EL. Overloaded hollow-fiber liquid chromatography. Biotechnol Prog. 1990;6:472–8.

    Article  CAS  Google Scholar 

  27. Ding H, Cussler EL. Fractional extraction with hollow fibers with hydrogel-filled walls. AIChE J. 1991;37(6):855–62.

    Article  CAS  Google Scholar 

  28. Daley AB, Wright RD, Oleschuk RD. Parallel, fluorous open-tubular chromatography using microstructured fibers. Anal Chim Acta. 2011;690:253–62.

    Article  CAS  Google Scholar 

  29. Desmet G, Manly C, Ottevaere H, Malsche W. Merging open-tubular and packed bed liquid chromatography. Anal Chem. 2015;87:7382–8.

    Article  CAS  Google Scholar 

  30. Beeck J, Callewaert M, Ottevaere H, Gardeniers H, Desmet G, Malsche W. On the advantages of radially elongated structures in microchip-based liquid chromatography. Anal Chem. 2013;85(10):5207–12.

    Article  Google Scholar 

  31. Stanelle R, Sander L, Marcus R. Hydrodynamic flow in capillary channel fiber columns for liquid chromatography. J Chromatogr A. 2005;1100:68–75.

    Article  CAS  Google Scholar 

  32. Stanelle R, Mignanelli M, Brown P, Marcus RK. Capillary-channeled polymer (C-CP) fibers as a stationary phase in microbore high-performance liquid chromatography columns. Anal Bioanal Chem. 2006;384(1):250–8.

    Article  CAS  Google Scholar 

  33. Nelson D, Marcus RK. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: comparative analysis with a packed-bed column. Anal Chem. 2006;78(24):8462–71.

    Article  CAS  Google Scholar 

  34. Nelson D, Marcus RK. A novel stationary phase: Capillary-Channeled Polymer (C-CP) fibers for HPLC separations of proteins. J Chromtogr Sci. 2003;41(9):475–9.

    Article  CAS  Google Scholar 

  35. Marcus R, Davis W, Knippel B, LaMotte L, Hill T, Perahia D, et al. Capillary-channeled polymer fibers as stationary phases in liquid chromatography separations. J Chromatogr A. 2003;986(1):17–31.

    Article  CAS  Google Scholar 

  36. Randunv K, Marcus RK. Microbore polypropylene Capillary Channeled Polymer (C-CP) fiber columns for rapid reversed-phase HPLC of proteins. Anal Bioanal Chem. 2012;404(3):721–9.

    Article  Google Scholar 

  37. Jiang L, Jin Y, Marcus RK. Polyethylenimine modified poly (ethylene terephthalate) capillary channeled-polymer fibers for anion exchange chromatography of proteins. J Chromatogr A. 2015;1410:200–9.

    Article  CAS  Google Scholar 

  38. Ladisch C, Yang Y, Velayudhan A, Ladisch M. A new approach to the study of textile properties with liquid chromatography comparison of void volume and surface area of cotton and ramie using a rolled fabric stationary phase. Text Res J. 1992;62(6):361–9.

    Article  CAS  Google Scholar 

  39. Ladisch M, Hamaker K, Hendrickson R, Brewer M. Device for packing chromatographic stationary phases. U.S. Patent No. 5,770,060. 23 Jun. 1998.

  40. Hamaker K, Liu J, Ladisch CM, Ladisch M. Transport properties of rolled, continuous stationary phase columns. Biotechnol Prog. 1998;14(1):21–30.

    Article  CAS  Google Scholar 

  41. Hamaker K, Rau S, Hendrickson R, Liu J, Ladisch C, Ladisch M. Rolled stationary phases: dimensionally structured textile adsorbents for rapid liquid chromatography of proteins. Ind Eng Chem Res. 1999;38:865–72.

    Article  CAS  Google Scholar 

  42. Hamaker K, Liu J, Seely R, Ladisch C, Ladisch M. Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor. Biotechnol Prog. 1996;12:184–9.

    Article  CAS  Google Scholar 

  43. Li C, Ladisch C, Yang Y, Hendrickson R, Keim C, Mosier N, et al. Optimal packing characteristics of rolled, continuous stationary-phase columns. Biotechnol Prog. 2002;18:309–16.

    Article  CAS  Google Scholar 

  44. Ladisch M, Ladisch C, Kohlmann K, Velayudhan A, Hendrickson R, Westgate P, Liu J. Method for derivatization of cellulosic stationary phase. U.S. Patent No. 5,808,010. 15 Sep. 1998.

  45. Bwatwa J, Yang Y, Li C, Keim C, Ladisch C, Ladisch M. Biotextiles—monoliths with rolled geometrics. Svec F, Tennikova TB, and Deyl Z (eds.), Chapter 11. J. Chromatography Library, 67.c(2003): 235–253.

  46. Hamaker K, Ladisch M. Intraparticle flow and plate height effects in liquid chromatography stationary phases. Sep Purif Rev. 1996;25(1):47–83.

    Article  CAS  Google Scholar 

  47. Pfeiffer J, Chen J, Hsu J. Permeability of gigaporous particles. AIChE J. 1996;42(4):932–9.

    Article  CAS  Google Scholar 

  48. Yang Y, Velayudhan A, Ladisch C, Ladisch M. Liquid chromatography using cellulosic continuous stationary phases. In: Tsao GT, Feichter A, editors. Advances in biochemical engineering/biotechnology. Berlin: Springer-Verlag; 1993. p. 123–46.

    Google Scholar 

  49. Hamaker K, Rau S, Hendrickson R, Liu J, Ladisch C, Ladisch M. Rolled stationary phases: dimensionally structured adsorbents for rapid liquid chromatography of proteins. Ind Eng Chem Res. 1999;38:865–72.

    Article  CAS  Google Scholar 

  50. Chou M, Bailey A, Avory T, Tanimoto J, Burnoul T. Removal of transmissible spongiform encephalothy prion from large volumes of culture media supplement with fetal bovine serum by using hollow fiber anion-exchange chromatography. PLOS One. 2015;10(4).

  51. Asahi KASEI, QyuSpeed D. Hollow fiber anion exchange membrane adsorber. Brochure Hollow Fiber Membrane Adsorber, 2011;1–6.

Download references

Acknowledgments

The material in this work was supported by USDA Hatch Project 10677, 10646, and the Department of Agricultural and Biological Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ladisch.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Published in the topical collection Fiber-based Platforms for Bioanalytics with guest editors Antje J. Baeumner and R. Kenneth Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladisch, M., Zhang, L. Fiber-based monolithic columns for liquid chromatography. Anal Bioanal Chem 408, 6871–6883 (2016). https://doi.org/10.1007/s00216-016-9839-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9839-7

Keywords

Navigation