Skip to main content
Log in

A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A label-free fluorescence assay has been developed for sensitive and selective detection of adenosine triphosphate (ATP) by using poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) as fluorescent indicator. In our design, ATP aptamer was split into two fragments, both of which were elongated with poly T strands that can be utilized as efficient template for the formation of copper nanoparticles through the reduction of copper ions by sodium ascorbate. In the presence of ATP, the two split aptamers could be dragged to form aptamer-ATP aptamer complex, which drew the poly T strands close to each other and induced a remarkable fluorescence enhancement of poly T-templated CuNPs. Thus, an elevated fluorescence enhancement of poly T-templated CuNPs was obtained with the increase in ATP concentration. Under optimized conditions, a good linear range for ATP detection was realized from 100 nM to 100 μM with a detection limit of 10.29 nM. In addition, the application of this biosensing system in complex biological matrix was demonstrated with satisfactory results. This assay provided a simple, label-free, cost-effective, and sensitive platform for the detection of ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, et al. Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res. 2003;59(2):428–40.

    Article  CAS  Google Scholar 

  2. Janssens D, Michiels C, Delaive E, Eliaers F, Drieu K, Remacle J. Protection of hypoxia-induced ATP decrease in endothelial cells by Ginkgo biloba extract and bilobalide. Biochem Pharmacol. 1995;50(7):991–9.

    Article  CAS  Google Scholar 

  3. Weille JD, Lazdunski M. ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci. 1988;85(4):1312–6.

    Article  Google Scholar 

  4. Chaudry IH, Clemens MG, Ohkawa M, Schleck S, Baue AE. Restoration of hepatocellular function and blood flow following hepatic ischemia with atp-mgcl2. Adv Shock Res. 1982;8:177–86.

    CAS  Google Scholar 

  5. Arora KK, Pedersen PL. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem. 1988;263(33):17422–8.

    CAS  Google Scholar 

  6. Li F, Du Z, Yang L, Tang B. Selective and sensitive turn-on detection of adenosine triphosphate and thrombin based on bifunctional fluorescent oligonucleotide probe. Biosens Bioelectron. 2013;41:907–10.

    Article  CAS  Google Scholar 

  7. Schweinsberg PD, Loo TL. Simultaneous analysis of ATP, ADP, AMP, and other purines in human erythrocytes by high-performance liquid chromatography. J Chromatogr A. 1980;181(1):103–7.

    Article  CAS  Google Scholar 

  8. Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc. 2010;132(27):9274–6.

    Article  CAS  Google Scholar 

  9. Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J, et al. In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem. 2013;85(14):6775–82.

    Article  CAS  Google Scholar 

  10. Ma C, Chen H, Han R, He H, Zeng W. Fluorescence detection of adenosine triphosphate using smart probe. Anal Biochem. 2012;429(1):8–10.

    Article  CAS  Google Scholar 

  11. Ma C, Tang Z, Wang K, Yang X, Tan W. A novel sensitive and selective ligation-based ATP assay using a molecular beacon. Analyst. 2013;138(10):3013–7.

    Article  CAS  Google Scholar 

  12. Zhou Z, Du Y, Dong S. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal Chem. 2011;83(13):5122–7.

    Article  CAS  Google Scholar 

  13. Mao Y, Liu J, He D, He X, Wang K, Shi H, et al. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing. Talanta. 2015;143:381–7.

    Article  CAS  Google Scholar 

  14. Li C, Numata M, Takeuchi M, Shinkai S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew Chem Int Ed. 2005;117(39):6529–32.

    Article  Google Scholar 

  15. Zhang S, Wang K, Li J, Li Z, Sun T. Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide-platinum/gold nanoparticles. RSC Adv. 2015;5(92):75746–52.

    Article  CAS  Google Scholar 

  16. Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small. 2010;6(2):201–4.

    Article  CAS  Google Scholar 

  17. Zhu Y, Hu XC, Shi S, Gao RR, Huang HL, Zhu YY, et al. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens Bioelectron. 2015;79:205–12.

    Article  Google Scholar 

  18. Zhu H-W, Dai W-X, Yu X-D, Xu J-J, Chen H-Y. Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing. Talanta. 2015;144:642–7.

    Article  CAS  Google Scholar 

  19. He X, Li Z, Jia X, Wang K, Yin J. A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer. Talanta. 2013;111:105–10.

    Article  CAS  Google Scholar 

  20. Liu J, Yu J, Chen J, Shih K. Noncovalent assembly of carbon nanoparticles and aptamer for sensitive detection of ATP. RSC Adv. 2014;4(72):38199–205.

    Article  CAS  Google Scholar 

  21. Liu J, Liu Y, Yang X, Wang K, Wang Q, Shi H, et al. Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots. Anal Chem. 2013;85(22):11121–8.

    Article  CAS  Google Scholar 

  22. Zhang M, Guo SM, Li YR, Zuo P, Ye BC. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem Commun. 2012;48(44):5488–90.

    Article  CAS  Google Scholar 

  23. Zhang K, Wang K, Zhu X, Xie M. A label-free kissing complexes-induced fluorescence aptasensor using DNA-templated silver nanoclusters as a signal transducer. Biosens Bioelectron. 2015;78:154–9.

    Article  Google Scholar 

  24. Zhang J, Li C, Zhi X, Ramón GA, Liu Y, Zhang C, et al. Hairpin DNA-templated silver nanoclusters as novel beacons in strand displacement amplification for MicroRNA detection. Anal Chem. 2016;88(2):1294–302.

    Article  CAS  Google Scholar 

  25. Wang C, Wang Y, Xu L, Zhang D, Liu M, Li X, et al. Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared. Small. 2012;8(20):3137–42.

    Article  CAS  Google Scholar 

  26. Yakimov A, Forrest SR. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl Phys Lett. 2002;80(9):1667–9.

    Article  CAS  Google Scholar 

  27. Qing Z, He X, He D, Wang K, Xu F, Qing T, et al. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int Ed Engl. 2013;52(37):9719–22.

    Article  CAS  Google Scholar 

  28. Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater. 2008;20(2):279–83.

    Article  CAS  Google Scholar 

  29. Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S. Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull. 2012;45(2):69–74.

    Article  Google Scholar 

  30. Seidel R, Colombi Ciacchi L, Weigel M, Pompe W, Mertig M. Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth. J Phys Chem B. 2004;108(30):10801–11.

    Article  CAS  Google Scholar 

  31. Jia X, Li J, Wang E. Cu nanoclusters with aggregation induced emission enhancement. Small. 2013;9(22):3873–9.

    Article  CAS  Google Scholar 

  32. Vodenicharov MD, Sallmann FR, Satoh MS, et al. Base excision repair is efficient in cells lacking poly (ADP-ribose) polymerase 1. Nucleic Acids Res. 2000;28(20):3887–96.

    Article  CAS  Google Scholar 

  33. He Y, Wang ZG, Tang HW, Pang DW. Low background signal platform for the detection of ATP: when a molecular aptamer beacon meets graphene oxide. Biosens Bioelectron. 2011;29(1):76–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21205108, 21505122). The authors are very grateful to Professor Yongjun Wu (Zhengzhou University) for providing A549 human lung adenocarcinoma cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Ge or Zhao-Hui Li.

Ethics declarations

All experimental procedures were performed according to the Guideline for Experimentation of Zhengzhou University, and the protocol was reviewed and approved by the ethics committee of the institution.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SS., Zhang, L., Cai, QY. et al. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles. Anal Bioanal Chem 408, 6711–6717 (2016). https://doi.org/10.1007/s00216-016-9788-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9788-1

Keywords

Navigation