Analytical and Bioanalytical Chemistry

, Volume 408, Issue 23, pp 6453–6459 | Cite as

Direct and precise length measurement of single, stretched DNA fragments by dynamic molecular combing and STED nanoscopy

  • Namdoo Kim
  • Hyung Jun Kim
  • Younggyu Kim
  • Kyung Suk Min
  • Seong Keun KimEmail author
Research Paper


A combination of DNA stretching method and super-resolution nanoscopy allows an accurate and precise measurement of the length of DNA fragments ranging widely in size from 117 to 23,130 bp. BstEII- and HindIII-treated λDNA fragments were stained with an intercalating dye and then linearly stretched on a coverslip by dynamic molecular combing. The image of individual DNA fragments was obtained by stimulated emission depletion nanoscopy. For DNA fragments longer than ∼1000 bp, the measured lengths of DNA fragments were consistently within ∼0.5 to 1.0 % of the reference values, raising the possibility of this method in a wide range of applications including facile detection for copy number variations and trinucleotide repeat disorder.


DNA Dynamic molecular combing Length measurement STED nanoscopy 



We thank Professor Stefan W. Hell of Max Planck Institute for Biophysical Chemistry for the permission to use the Imspector imaging program. This research was supported by the Global Frontier Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014M3A6A4075063). We also acknowledge the BK21 Plus Program and SNU Brain Fusion Grant.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2016_9764_MOESM1_ESM.pdf (369 kb)
ESM 1 (PDF 369 kb)


  1. 1.
    Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.Google Scholar
  2. 2.
    Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.CrossRefGoogle Scholar
  3. 3.
    Marmorstein LY, Kinev AV, Chan GK, Bochar DA, Beniya H, Epstein JA, et al. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell. 2001;104(2):247–57.CrossRefGoogle Scholar
  4. 4.
    Preston CM, Frame MC, Campbell ME. A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell. 1988;52(3):425–34.CrossRefGoogle Scholar
  5. 5.
    Sen D, Geyer CR. DNA enzymes. Curr Opin Chem Biol. 1998;2(6):680–7.CrossRefGoogle Scholar
  6. 6.
    Silverman SK. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res. 2005;33(19):6151–63.CrossRefGoogle Scholar
  7. 7.
    Raghunathan S, Ricard CS, Lohman TM, Waksman G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-angstrom resolution. Proc Natl Acad Sci U S A. 1997;94(13):6652–7.CrossRefGoogle Scholar
  8. 8.
    Griffith J, Bleyman M, Rauch CA, Kitchin PA, Englund PT. Visualization of the bent helix in kinetoplast DNA by electron-microscopy. Cell. 1986;46(5):717–24.CrossRefGoogle Scholar
  9. 9.
    Hu J, Wang M, Weier HUG, Frantz P, Kolbe W, Ogletree DF, et al. Imaging of single extended DNA molecules on flat (aminopropyl)triethoxysilane–mica by atomic force microscopy. Langmuir. 1996;12(7):1697–700.CrossRefGoogle Scholar
  10. 10.
    Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19(11):780–2.CrossRefGoogle Scholar
  11. 11.
    Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon. 2009;3(3):144–7.CrossRefGoogle Scholar
  12. 12.
    Han KY, Kim SK, Eggeling C, Hell SW. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett. 2010;10(8):3199–203.CrossRefGoogle Scholar
  13. 13.
    Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, et al. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods. 2013;10(9):910–U132.CrossRefGoogle Scholar
  14. 14.
    Hanne J, Falk HJ, Gorlitz F, Hoyer P, Engelhardt J, Sahl SJ, et al. STED nanoscopy with fluorescent quantum dots. Nat Commun. 2015;6. doi: 10.1038/ncomms8127.
  15. 15.
    Bianchini P, Peres C, Oneto M, Galiani S, Vicidomini G, Diaspro A. STED nanoscopy: a glimpse into the future. Cell Tissue Res. 2015;360(1):143–50.CrossRefGoogle Scholar
  16. 16.
    Persson F, Bingen P, Staudt T, Engelhardt J, Tegenfeldt JO, Hell SW. Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED). Angew Chem Int Ed Engl. 2011;50(24):5581–3.CrossRefGoogle Scholar
  17. 17.
    Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem. 2003;278(49):49636–43.CrossRefGoogle Scholar
  18. 18.
    Sambrook J, Russell DW. Molecular cloning: a laboratory manual. CSHL Press; 2001.Google Scholar
  19. 19.
    Stanojcic S, Sollelis L, Kuk N, Crobu L, Balard Y, Schwob E, et al. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells. Sci Rep-Uk. 2016;6. doi: 10.1038/srep23142.
  20. 20.
    Goodwin PM, Johnson ME, Martin JC, Ambrose WP, Marrone BL, Jett JH, et al. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry. Nucleic Acids Res. 1993;21(4):803–6.CrossRefGoogle Scholar
  21. 21.
    Foquet M, Korlach J, Zipfel W, Webb WW, Craighead HG. DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. Anal Chem. 2002;74(6):1415–22.CrossRefGoogle Scholar
  22. 22.
    Laib S, Rankl M, Ruckstuhl T, Seeger S. Sizing of single fluorescently stained DNA fragments by scanning microscopy. Nucleic Acids Res. 2003;31(22), e138.CrossRefGoogle Scholar
  23. 23.
    Otobe K, Ohtani T. Behavior of DNA fibers stretched by precise meniscus motion control. Nucleic Acids Res. 2001;29(22), E109.CrossRefGoogle Scholar
  24. 24.
    Chan TF, Ha C, Phong A, Cai D, Wan E, Leung L, et al. A simple DNA stretching method for fluorescence imaging of single DNA molecules. Nucleic Acids Res. 2006;34(17), e113. doi: 10.1093/nar/gkl593.CrossRefGoogle Scholar
  25. 25.
    Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science. 1997;277(5331):1518–23.CrossRefGoogle Scholar
  26. 26.
    Gueroui Z, Place C, Freyssingeas E, Berge B. Observation by fluorescence microscopy of transcription on single combed DNA. Proc Natl Acad Sci U S A. 2002;99(9):6005–10.CrossRefGoogle Scholar
  27. 27.
    Benke A, Mertig M, Pompe W. pH- and salt-dependent molecular combing of DNA: experiments and phenomenological model. Nanotechnology. 2011;22(3):035304.CrossRefGoogle Scholar
  28. 28.
    Deng Z, Mao C. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett. 2003;3(11):1545–8.CrossRefGoogle Scholar
  29. 29.
    Hu J, Zhang Y, Gao H, Li M, Hartmann U. Artificial DNA patterns by mechanical nanomanipulation. Nano Lett. 2002;2(1):55–7.CrossRefGoogle Scholar
  30. 30.
    Figeys D, Arriaga E, Renborg A, Dovichi NJ. Use of the fluorescent intercalating dyes POPO-3, YOYO-3 and YOYO-1 for ultrasensitive detection of double-stranded DNA separated by capillary electrophoresis with hydroxypropylmethyl cellulose and non-cross-linked polyacrylamide. J Chromatogr A. 1994;669(1–2):205–16.CrossRefGoogle Scholar
  31. 31.
    Labit H, Goldar A, Guilbaud G, Douarche C, Hyrien O, Marheineke K. A simple and optimized method of producing silanized surfaces for FISH and replication mapping on combed DNA fibers. Biotechniques. 2008;45(6):649–52. 54, 56–8.CrossRefGoogle Scholar
  32. 32.
    Wu Y, Wu X, Lu R, Zhang J, Toro L, Stefani E. Resonant scanning with large field of view reduces photobleaching and enhances fluorescence yield in STED microscopy. Sci Rep. 2015;5:14766.CrossRefGoogle Scholar
  33. 33.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A. 2000;97(15):8206–10.CrossRefGoogle Scholar
  34. 34.
    Bensimon D, Simon AJ, Croquette VV, Bensimon A. Stretching DNA with a receding meniscus: experiments and models. Phys Rev Lett. 1995;74(23):4754–7.CrossRefGoogle Scholar
  35. 35.
    Baday M, Cravens A, Hastie A, Kim H, Kudeki DE, Kwok P-Y, et al. Multicolor super-resolution DNA imaging for genetic analysis. Nano Lett. 2012;12(7):3861–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Namdoo Kim
    • 1
  • Hyung Jun Kim
    • 1
  • Younggyu Kim
    • 1
    • 2
  • Kyung Suk Min
    • 3
  • Seong Keun Kim
    • 1
    • 3
    Email author
  1. 1.Department of ChemistrySeoul National UniversitySeoulRepublic of Korea
  2. 2.LumiMac, Inc.SeoulKorea
  3. 3.Department of Biophysics and Chemical BiologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations