Skip to main content
Log in

Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) materials with a layered structure have unusual physicochemical properties. Herein it was shown that g-C3N4 quantum dots (QDs) obtained through a thermal-chemical etching route exhibited attractive upconversion and electrochemiluminescence (ECL) properties. After modification on nanoporous gold (NPG) with a sponge-like porous structure, g-C3N4 QDs were employed to fabricate an ECL sensor for the determination of Pb2+ using target - dependent DNAzyme as the recognition unit. Moreover, magnetic reduced graphene oxide nanosheets (rGO) attached with Fe3O4 nanoparticles (rGO-Fe3O4) were obtained via a one-pot in situ reduction approach, and used as carriers of DNAzyme. To make full use of the unique magnetic property the prepared rGO-Fe3O4, a flow injection ECL detecting cell was designed using indium tin oxide (ITO) glass as working electrode. Due to the unique separation and enrichment properties of magnetic Fe3O4-rGO materials as well as wire-like conductivity of NPG, high sensitivity and selectivity for the determination of Pb2+ in real water samples were achieved. This indicates that g-C3N4 has excellent anodic ECL performance in the presence of triethanolamine, and could be applied in real environmental samples analyses.

Graphitic carbon nitride based electrochemiluminescence sensor for the sensitive monitor of lead(II) ions in real samples was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zang Y, Lei J, Hao Q, Ju H. “Signal-on” photoelectrochemical sensing strategy based on target dependent aptamer conformational conversion for selective detection of lead(II) ion. ACS Appl Mater Interfaces. 2014;6:15991–7.

    Article  CAS  Google Scholar 

  2. Dong Y, Tian W, Ren S, Dai R, Chi Y, Chen G. Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl Mater Interfaces. 2014;6:1646–51.

    Article  CAS  Google Scholar 

  3. Xu H, Xu P, Gao S, Zhang S, Zhao X, Fan C, et al. Highly sensitive recognition of Pb2+ using Pb2+ triggered exonuclease aided DNA recycling. Biosens Bioelectron. 2013;47:520–3.

    Article  CAS  Google Scholar 

  4. Chen J, Zhou X, Zeng L. Enzyme-free strip biosensor for amplified detection of Pb2+ based on a catalytic DNA circuit. Chem Commun. 2013;49:984–6.

    Article  CAS  Google Scholar 

  5. Un H, Huang C, Huang J, Huang C, Jia T, Xu L. A naphthalimide-based fluorescence “Turn-On” probe for the detection of Pb2+ in aqueous solution and living cells. Chem Asian J. 2014;9:3397–402.

    Article  CAS  Google Scholar 

  6. Shi X, Gu W, Peng W, Li B, Chen N, Zhao K, et al. Sensitive Pb2+ probe based on the fluorescence quenching by graphene oxide and enhancement of the leaching of gold nanoparticles. ACS Appl Mater Interfaces. 2014;6:2568–75.

    Article  CAS  Google Scholar 

  7. Xu H, Zhan S, Zhang D, Xia B, Zhan X, Wang L, et al. A label-free fluorescent sensor for the detection of Pb2+ and Hg2+. Anal Methods. 2015;7:6260–5.

    Article  CAS  Google Scholar 

  8. Kuo SY, Li HH, Wu PJ, Chen CP, Huang YC, Chan YH. Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells. Anal Chem. 2015;87:4765–71.

    Article  CAS  Google Scholar 

  9. Zhu J, Yu Y, Li J, Zhao J. Colorimetric detection of lead (II) ions based on accelerating surface etching of gold nanorods to nanospheres: the effect of sodium thiosulfate. RSC Adv. 2016. doi:10.1039/C5RA26560F.

    Google Scholar 

  10. Pelossof G, Tel-Vered R, Willner I. Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label. Anal Chem. 2012;84:3703–9.

    Article  CAS  Google Scholar 

  11. Xia H, Li L, Yin Z, Hou X, Zhu JJ. Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence. ACS Appl Mater Interfaces. 2015;7:696–703.

    Article  CAS  Google Scholar 

  12. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.

    Article  CAS  Google Scholar 

  13. He Y, Huang G, Jiang J, Zhang Q, Cui H. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid. Carbon. 2013;56:201–7.

    Article  Google Scholar 

  14. Zhang Y, Dai W, Liu F, Li L, Li M, Ge S, et al. Ultrasensitive electrochemiluminescent immunosensor based on dual signal amplification strategy of gold nanoparticles-dotted graphene composites and CdTe quantum dots coated silica nanoparticles. Anal Bioanal Chem. 2013;405:4921–9.

    Article  CAS  Google Scholar 

  15. Zhang Y, Liu W, Ge S, Yan M, Wang S, Yu J, et al. Multiplexed sandwich immunoassays using flow-injection electrochemiluminescence with designed substrate spatial-resolved technique for detection of tumor markers. Biosens Bioelectron. 2013;41:684–90.

    Article  CAS  Google Scholar 

  16. Zhou M, Roovers J, Robertson GP, Grover CP. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal Chem. 2003;75:6708–17.

    Article  CAS  Google Scholar 

  17. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–8.

    Article  CAS  Google Scholar 

  18. Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim DH, et al. Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem. 2014;86:4188–95.

    Article  CAS  Google Scholar 

  19. Cheng C, Huang Y, Wang J, Zheng B, Yuan H, Xiao D. Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin. Anal Chem. 2013;85:2601–5.

    Article  CAS  Google Scholar 

  20. Wang YZ, Hao N, Feng QM, Shi HW, Xu JJ, Chen HY. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag–PAMAM–luminol nanocomposites. Biosens Bioelectron. 2016;77:76–82.

    Article  Google Scholar 

  21. Lu Q, Zhang J, Liu X, Wu Y, Yuan R, Chen S. Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@graphitic carbon nitride polymer nanosheet-polyaniline hybrids. Analyst. 2014;139:6556–62.

    Article  CAS  Google Scholar 

  22. Shen B, Zhai W, Tao M, Ling J, Zheng W. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces. 2013;5:11383–91.

    Article  CAS  Google Scholar 

  23. Tang J, Tang D, Niessner R, Chen G, Knopp D. Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem. 2011;83:5407–14.

    Article  CAS  Google Scholar 

  24. Li YR, Liu Q, Hong Z, Wang HF. Magnetic separation-assistant fluorescence resonance energy transfer inhibition for highly sensitive probing of nucleolin. Anal Chem. 2015;87:12183–9.

    Article  CAS  Google Scholar 

  25. Liu W, Zhang Y, Ge S, Song X, Huang J, Yan M, et al. Core-shell Fe3O4-Au magnetic nanoparticles based nonenzymatic ultrasensitive electrochemiluminescence immunosensor using quantum dots functionalized graphene sheet as labels. Anal Chim Acta. 2013;770:132–9.

    Article  CAS  Google Scholar 

  26. Gu W, Deng X, Gu X, Jia X, Lou B, Zhang X, et al. Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal Chem. 2015;87:1876–81.

    Article  CAS  Google Scholar 

  27. Han F, Jiang H, Fang D, Jiang D. Potential-resolved electrochemiluminescence for determination of two antigens at the cell surface. Anal Chem. 2014;86:6896–902.

    Article  CAS  Google Scholar 

  28. Duan H, Xu C. Low-temperature CO oxidation over unsupported nanoporous gold catalysts with active or inert oxide residues. J Catal. 2015;332:31–7.

    Article  CAS  Google Scholar 

  29. Xu C, Wang L, Mu X, Ding Y. Nanoporous PtRu alloys for electrocatalysis. Langmuir. 2010;26:7437–43.

    Article  CAS  Google Scholar 

  30. Zhang X, Du B, Wu D, Ma H, Zhang Y, Li H, et al. Signal amplification strategy of triple-layered core–shell Au@Pd@Pt nanoparticles for ultrasensitive immunoassay detection of squamous cell carcinoma antigen. J Biomed Nanotechnol. 2015;11:245–52.

    Article  CAS  Google Scholar 

  31. He H, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl Mater Interfaces. 2010;2:3201–10.

    Article  CAS  Google Scholar 

  32. Zhang Y, Su M, Ge L, Ge S, Yu J, Song X. Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay. Carbon. 2013;57:22–33.

    Article  CAS  Google Scholar 

  33. Zhang S, Li J, Zeng M, Zhao G, Xu J, Hu W, et al. In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl Mater Interfaces. 2013;5:12735–43.

    Article  CAS  Google Scholar 

  34. Wang W, Yu JC, Shen Z, Chan DKL, Gu T. g-C3N4 quantum dots: direct synthesis, up-conversion properties, and photocatalytic application. Chem Commun. 2014;50:10148–50.

    Article  CAS  Google Scholar 

  35. Shen J, Zhu Y, Chen C, Yang X, Li C. Facile preparation and up-conversion luminescence of graphene quantum dots. Chem Commun. 2011;47:2580–2.

    Article  CAS  Google Scholar 

  36. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8:76–80.

    Article  CAS  Google Scholar 

  37. Yin XB, Sha BB, Zhang XH, He XW, Xie H. The factors affecting the electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium (II)/tertiary amines. Electroanalysis. 2008;20:1085–91.

    Article  CAS  Google Scholar 

  38. Bruce D, Richter MM. Green electrochemiluminescence from ortho-metalated tris(2-phenylpyridine)iridium(III). Anal Chem. 2002;74:1340–2.

    Article  CAS  Google Scholar 

  39. Tang S, Lu W, Gu F, Tong P, Yan Z, Zhang L. A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification. Electrochim Acta. 2014;134:1–7.

    Article  CAS  Google Scholar 

  40. Zhang B, Lu L, Hu Q, Huang F, Lin Z. ZnO nan flower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron. 2014;56:243–9.

    Article  CAS  Google Scholar 

  41. Wang HB, Wang L, Huang KJ, Xu SP, Wang HQ, Wanga LL, et al. A highly sensitive and selective biosensing strategy for the detection of Pb2+ ions based on GR-5 DNAzyme functionalized AuNPs. New J Chem. 2013;37:2557–63.

    Article  CAS  Google Scholar 

  42. Ma F, Sun B, Qi H, Zhang H, Gao Q, Zhang C. A signal-on electrogenerated chemiluminescent biosensor for lead ion based on DNAzyme. Anal Chim Acta. 2011;683:234–41.

    Article  CAS  Google Scholar 

  43. Hai H, Yang F, Li J. Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Adv. 2013;3:13144–8.

    Article  CAS  Google Scholar 

  44. Wang H, Chen Q, Tan Z, Yin X, Wang L. Electrochemiluminescence of CdTe quantum dots capped with glutathione and thioglycolic acid and its sensing of Pb2+. Electrochim Acta. 2012;72:28–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Fund for Shandong Independent Innovation and Achievements Transformation (2014ZZCX02703), National High-tech R&D Program (863 Program) (SQ2015AAJY1562), and National Natural Science Foundation of China (21575051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Electrochemiluminescence with guest editors Hua Cui, Francesco Paolucci, Neso Sojic, and Guobao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, L., Kong, Q. et al. Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions. Anal Bioanal Chem 408, 7181–7191 (2016). https://doi.org/10.1007/s00216-016-9718-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9718-2

Keywords

Navigation