Skip to main content

Advertisement

Log in

Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We screened a highly specific monoclonal antibody (McAb), named 6D, against Acidovorax avenae subsp. citrulli (Aac). Single McAb 6D was used as both nanogold-labeled antibody and test antibody to develop a single self-paired colloidal gold immunochromatographic test strip (Sa-GICS). The detection limit achieved using the Sa-GICS approach was 105 CFU/mL, with a result that can be observed by the naked eye within 10 min. Moreover, Sa-GICS can detect eight strains of Aac and display no cross-reactions with other pathogenic plant microorganisms. Artificial contamination experiments demonstrated that Sa-GICS would not be affected by impurities in the leaves or stems of the plants and were consistent with the PCR results. This is the first report on the development of a colloidal gold immunoassay strip with self-paired single McAb for the rapid detection of Aac.

Schematic representation of the test strip

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Block C, Shepherd L. Long-term survival and seed transmission of Acidovorax avenae subsp. citrulli in melon and watermelon seed. Phytopathology. 2009;99(6).doi:10.1094/PHP-2008-1219-01-BR.

  2. Webb R, Goth R. A seedborne bacterium isolated from watermelon. Plant Dis Rep. 1965;49:818–21.

    Google Scholar 

  3. Burdman S, Walcott R. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol Plant Pathol. 2012;13(8):805–15.

    Article  Google Scholar 

  4. Bahar O, Kritzman G, Burdman S. Bacterial fruit blotch of melon: screens for disease tolerance and role of seed transmission in pathogenicity. Eur J Plant Pathol. 2009;123(1):71–83.

    Article  Google Scholar 

  5. Bahar O, Efrat M, Hadar E, Dutta B, Walcott R, Burdman S. New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathol. 2008;57(4):754–63.

    Article  CAS  Google Scholar 

  6. Humphris SN, Cahill G, Elphinstone JG, Kelly R, Parkinson NM, Pritchard L, et al. Detection of the bacterial potato pathogens Pectobacterium and Dickeya spp. using conventional and real-time PCR. Plant pathology: techniques and protocols. New York: Springer; 2015. p. 1–16.

    Google Scholar 

  7. Cui Z, Ojaghian MR, Tao Z, Kakar KU, Zeng J, Zhao W, et al. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice. J Appl Microbiol. 2016;120(5):1357–67.

    Article  CAS  Google Scholar 

  8. Safavieh M, Ahmed MU, Ng A, Zourob M. High-throughput real-time electrochemical monitoring of LAMP for pathogenic bacteria detection. Biosens Bioelectron. 2014;58:101–6.

    Article  CAS  Google Scholar 

  9. Li J, Huang R, Xia K, Liu L. Double antibodies sandwich enzyme-linked immunosorbent assay for the detection of Alicyclobacillus acidoterrestris in apple juice concentrate. Food Control. 2014;40:172–6.

    Article  CAS  Google Scholar 

  10. Zhao Y, Liu L, Kong D, Kuang H, Wang L, Xu C. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl Mater Interfaces. 2014;6(23):21178–83.

    Article  CAS  Google Scholar 

  11. Feng M, Kong D, Wang W, Liu L, Song S, Xu C. Development of an immunochromatographic strip for rapid detection of Pantoea stewartii subsp. stewartii. Sensors. 2015;15(2):4291–301.

    Article  CAS  Google Scholar 

  12. Zhang Y, Tan C, Fei R, Liu X, Zhou Y, Chen J, et al. Sensitive chemiluminescence immunoassay for E. coli O157: H7 detection with signal dual-amplification using glucose oxidase and laccase. Anal Chem. 2014;86(2):1115–22.

    Article  CAS  Google Scholar 

  13. Berlina AN, Taranova NA, Zherdev AV, Vengerov YY, Dzantiev BB. Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal Bioanal Chem. 2013;405(14):4997–5000.

    Article  CAS  Google Scholar 

  14. Chen R, Li H, Zhang H, Zhang S, Shi W, Shen J, et al. Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk. Anal Bioanal Chem. 2013;405(21):6783–9.

    Article  CAS  Google Scholar 

  15. Vaisocherová-Lísalová H, Víšová I, Ermini ML, Špringer T, Song XC, Mrázek J, et al. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90.

    Article  Google Scholar 

  16. Day J, Basavanna U. Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system. Food Microbiol. 2015;46:564–72.

    Article  CAS  Google Scholar 

  17. Faulk WP, Taylor GM. Communication to the editors: an immunocolloid method for the electron microscope. Immunochemistry. 1971;8(11):1081–3.

    Article  CAS  Google Scholar 

  18. Niu K, Zheng X, Huang C, Xu K, Zhi Y, Shen H, et al. A colloidal gold nanoparticle-based immunochromatographic test strip for rapid and convenient detection of Staphylococcus aureus. J Nanosci Nanotechnol. 2014;14(7):5151–6.

    Article  CAS  Google Scholar 

  19. Shi L, Wu F, Wen Y, Zhao F, Xiang J, Ma L. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal Bioanal Chem. 2015;407(2):529–35.

    Article  CAS  Google Scholar 

  20. Liu Y, Wu A, Hu J, Lin M, Wen M, Zhang X, et al. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Anal Biochem. 2015;483:7–11.

    Article  CAS  Google Scholar 

  21. Le T, Yan P, Xu J, Hao Y. A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chem. 2013;138(2):1610–5.

    Article  CAS  Google Scholar 

  22. Ren W, Huang Z, Xu Y, Li Y, Ji Y, Su B. Urchin-like gold nanoparticle-based immunochromatographic strip test for rapid detection of fumonisin B1 in grains. Anal Bioanal Chem. 2015;407(24):7341–8.

    Article  CAS  Google Scholar 

  23. Arai H, Nakamura K, Yoshida Y, Tawarada K. Development of quantitative immunochromatographic kit and visual screening immunoassay strip for cadmium. Anal Bioanal Chem. 2016. doi:10.1007/s00216-016-9475-2.

    Google Scholar 

  24. Taranova N, Berlina A, Zherdev A, Dzantiev B. ‘Traffic light’immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 2015;63:255–61.

    Article  CAS  Google Scholar 

  25. Wu X, Kong D, Song S, Liu L, Kuang H, Xu C. Development of sandwich ELISA and immunochromatographic strip methods for the detection of Xanthomonas oryzae pv. oryzae. Anal Methods. 2015;7(15):6190–7.

    Article  CAS  Google Scholar 

  26. Ling S, Chen Q-A, Zhang Y, Wang R, Jin N, Pang J, et al. Development of ELISA and colloidal gold immunoassay for tetrodotoxin detetcion based on monoclonal antibody. Biosens Bioelectron. 2015;71:256–60.

    Article  CAS  Google Scholar 

  27. Meng K, Sun W, Zhao P, Zhang L, Cai D, Cheng Z, et al. Development of colloidal gold-based immunochromatographic assay for rapid detection of Mycoplasma suis in porcine plasma. Biosens Bioelectron. 2014;55:396–9.

    Article  CAS  Google Scholar 

  28. Anfossi L, Di Nardo F, Giovannoli C, Passini C, Baggiani C. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anal Bioanal Chem. 2013;405(30):9859–67.

    Article  CAS  Google Scholar 

  29. Sithigorngul P, Rukpratanporn S, Pecharaburanin N, Suksawat P, Longyant S, Chaivisuthangkura P, et al. A simple and rapid immunochromatographic test strip for detection of pathogenic isolates of Vibrio harveyi. J Microbiol Methods. 2007;71(3):256–64.

    Article  CAS  Google Scholar 

  30. Wangman P, Longyant S, Chaivisuthangkura P, Sridulyakul P, Rukpratanporn S, Sithigorngul P. Penaeus monodon nucleopolyhedrovirus detection using an immunochromatographic strip test. J Virol Methods. 2012;183(2):210–4.

    Article  CAS  Google Scholar 

  31. Walcott R, Gitaitis R. Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis. 2000;84(4):470–4.

    Article  CAS  Google Scholar 

  32. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  Google Scholar 

  33. Himananto O, Thummabenjapone P, Luxananil P, Kumpoosiri M, Hongprayoon R, Kositratana W, et al. Novel and highly specific monoclonal antibody to Acidovorax citrulli and development of ELISA-based detection in cucurbit leaves and seed. Plant Dis. 2011;95(9):1172–8.

    Article  CAS  Google Scholar 

  34. Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Oplatowska M, et al. Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS One. 2013;8(4), e62344.

    Article  CAS  Google Scholar 

  35. Ha Y, Fessehaie A, Ling K, Wechter W, Keinath A, Walcott R. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology. 2009;99(6):666–78.

    Article  CAS  Google Scholar 

  36. Zhao W, Lu J, Ma W, Xu C, Kuang H, Zhu S. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens Bioelectron. 2011;26(10):4241–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Capability Construction Program of Science and Technology Commission of Shanghai (13430502400), Science and Technology Innovation Plan of Shanghai: Yangtze River Delta Joint Research (15395810900), Postgraduate Education Innovation Program of Shanghai and the Special Fund for Agro-Scientific Research in the Public Interest (201003066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Zhao, Enguo Fan or Qing Liu.

Ethics declarations

All animal studies have been approved by China Ethics Committee and performed in accordance with the ethical standards.

All of the authors agree to the submission of this paper. The corresponding authors declare on behalf of their co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Conflict of interest

We confirm that there is no conflict of interest for this manuscript.

Additional information

Haijuan Zeng and Wenbo Guo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Guo, W., Liang, B. et al. Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli . Anal Bioanal Chem 408, 6071–6078 (2016). https://doi.org/10.1007/s00216-016-9715-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9715-5

Keywords

Navigation