Skip to main content
Log in

On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins.

On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohen LH, Nicoll-Griffith DA. Plasma protein binding methods in drug discovery and development: bioanalysis. In: Lyubimov AV, editor. Encyclopedia of drug metabolism and interactions. Hoboken: Wiley; 2012. p. 657–74.

    Google Scholar 

  2. Hage DS, Anguizola J, Barnaby O, Jackson A, Yoo MJ, Papastavros E, et al. Characterization of drug interactions with serum proteins by using high-performance affinity chromatography. Curr Drug Metab. 2011;12:313–28.

    Article  CAS  Google Scholar 

  3. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR. Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol. 2002;64:1355–74.

    Article  CAS  Google Scholar 

  4. Vuignier K, Guillarme D, Veuthey JL, Carrupt PA, Schappler J. High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug-plasma protein interactions. J Pharm Biomed Anal. 2013;74:205–12.

    Article  CAS  Google Scholar 

  5. Hage DS. High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B. 2002;768:3–30.

    Article  CAS  Google Scholar 

  6. Ceciliani F, Pocacqua V. The acute phase protein α1-acid glycoprotein: a model for altered glycosylation during diseases. Curr Protein Pept Sci. 2007;8:91–108.

    Article  CAS  Google Scholar 

  7. Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev. 2001;33:161–235.

    Article  CAS  Google Scholar 

  8. Tesseromatis C, Alevizou A, Tigka E, Kotsiou A. Acute-phase proteins: alpha-1-acid glycoprotein. In: Veas F, editor. Acute phase proteins—regulation and functions of acute phase proteins. Rijeka: InTech; 2011. p. 247–60.

    Google Scholar 

  9. Goolkasian DL, Slaughter RL, Edwards DJ, Lalka D. Displacement of lidocaine from serum α1-acid glycoprotein binding sites by basic drugs. Eur J Clin Pharmacol. 1983;25:413–7.

    Article  CAS  Google Scholar 

  10. Routledge PA, Barchowsky A, Bjornsson TD, Kitchell BB, Shand DG. Lidocaine plasma protein binding. Clin Pharmacol Ther. 1980;27:347–51.

    Article  CAS  Google Scholar 

  11. Hanada K, Ohta T, Hirai M, Arai M, Ogata H. Enantioselective binding of propranolol, disopyramide, and verapamil to human α1-acid glycoprotein. J Pharm Sci. 2000;89:751–7.

    Article  CAS  Google Scholar 

  12. Freilich DI, Giardina EG. Imipramine binding to alpha-1-acid glycoprotein in normal subjects and cardiac patients. Clin Pharmacol Ther. 1984;35:670–4.

    Article  CAS  Google Scholar 

  13. Albani F, Riva R, Contin M, Baruzzi A. Stereoselective binding of propranolol enantiomers to human α1-acid glycoprotein and human plasma. Br J Clin Pharmacol. 1984;18:244–6.

    Article  CAS  Google Scholar 

  14. Kaliszan R, Nasal A, Turowski M. Binding site for basic drugs on α1-acid glycoprotein as revealed by chemometric analysis of biochromatographic data. Biomed Chromatogr. 1995;9:211–5.

    Article  CAS  Google Scholar 

  15. Piafsky KM, Borga O. Plasma protein binding of basic drugs. II. importance of alpha1-acid glycoprotein for interindividual variation. Clin Pharmacol Ther. 1977;22:545–9.

    Article  CAS  Google Scholar 

  16. Lai CM, Moore P, Quon CY. Binding of fosphenytoin, phosphate ester pro drug of phenytoin, to human serum proteins and competitive binding with carbamazepine, diazepam, phenobarbital, phenylbutazone, phenytoin, valproic acid or warfarin. Res Commun Mol Pathol Pharmacol. 1995;88:51–62.

    CAS  Google Scholar 

  17. Kim Y, Choi K, Jung J, Park S, Kim PG, Park J. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int. 2007;33:370–5.

    Article  CAS  Google Scholar 

  18. Herve F, Gomas E, Duche JC, Tillement JP. Evidence for differences in the binding of drugs to the two main genetic variants of human α1-acid glycoprotein. Br J Clin Pharmacol. 1993;36:241–9.

    Article  CAS  Google Scholar 

  19. Leow KP, Wright AW, Cramond T, Smith MT. Determination of the serum protein binding of oxycodone and morphine using ultrafiltration. Ther Drug Monit. 1993;15:440–7.

    Article  CAS  Google Scholar 

  20. Urien S, Albengres E, Pinquier JL, Tillement JP. Role of alpha-1 acid glycoprotein, albumin, and nonesterified fatty acids in serum binding of apazone and warfarin. Clin Pharmacol Ther. 1986;39:683–9.

    Article  CAS  Google Scholar 

  21. Urien S, Albengres E, Zini R, Tillement JP. Evidence for binding of certain acidic drugs to α1-acid glycoprotein. Biochem Pharmacol. 1982;31:3687–9.

    Article  CAS  Google Scholar 

  22. Urien S, Bree F, Testa B, Tillement JP. pH-dependence of warfarin binding to α1-acid glycoprotein (orosomucoid). Biochem J. 1993;289:767–70.

    Article  CAS  Google Scholar 

  23. Nakagawa T, Kishino S, Itoh S, Sugawara M, Miyazaki K. Differential binding of disopyramide and warfarin enantiomers to human α1-acid glycoprotein variants. Br J Clin Pharmacol. 2003;56:664–9.

    Article  CAS  Google Scholar 

  24. Maruyama T, Furuie MA, Hibino S, Otagiri M. Comparative study of interaction mode of diazepines with human serum albumin and α1-acid glycoprotein. J Pharm Sci. 1992;81:16–20.

    Article  CAS  Google Scholar 

  25. Frostell-Karlsson A, Remaeus A, Roos H, Andersson K, Borg P, Hamalainen M, et al. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J Med Chem. 2000;43:1986–92.

    Article  CAS  Google Scholar 

  26. Amini A, Westerlund D. Evaluation of association constants between drug enantiomers and human α1-acid glycoprotein by applying a partial-filling technique in affinity capillary electrophoresis. Anal Chem. 1998;70:1425–30.

    Article  CAS  Google Scholar 

  27. Mallik R, Xuan H, Guiochon G, Hage DS. Immobilization of α1-acid glycoprotein for chromatographic studies of drug-protein binding II. correction for errors in association constant measurements. Anal Biochem. 2008;376:154–6.

    Article  CAS  Google Scholar 

  28. Mallik R, Xuan H, Hage DS. Development of an affinity silica monolith containing α1-acid glycoprotein for chiral separations. J Chromatogr A. 2007;1149:294–304.

    Article  CAS  Google Scholar 

  29. Xuan H, Hage DS. Immobilization of α1-acid glycoprotein for chromatographic studies of drug-protein binding. Anal Biochem. 2005;346:300–10.

    Article  CAS  Google Scholar 

  30. Xuan H, Joseph KS, Wa C, Hage DS. Biointeraction analysis of carbamazepine binding to α1-acid glycoprotein by high-performance affinity chromatography. J Sep Sci. 2010;33:2294–301.

    Article  CAS  Google Scholar 

  31. Singh SS, Mehta J. Measurement of drug-protein binding by immobilized human serum albumin-HPLC and comparison with ultrafiltration. J Chromatogr B. 2006;834:108–16.

    Article  CAS  Google Scholar 

  32. Hermanson GT, Mallia AK, Smith PK. Immobilized affinity ligand techniques. San Diego: Academic; 1992.

    Google Scholar 

  33. Besanger TR, Brennan JD. Entrapment of membrane proteins in sol–gel derived silica. J Sol–gel Sci Techn. 2006;40:209–25.

    Article  CAS  Google Scholar 

  34. Keeling-Tucker T, Brennan JD. Fluorescent probes as reporters on the local structure and dynamics in sol–gel-derived nanocomposite materials. Chem Mater. 2001;13:3331–50.

    Article  CAS  Google Scholar 

  35. Vera-Avila LE, Garcia-Salgado E, de Llasera Garcia MP, Pena-Alvarez A. Binding characteristics of bovine serum albumin encapsulated in sol–gel glasses: an alternative for protein interaction studies. Anal Biochem. 2008;373:272–80.

    Article  CAS  Google Scholar 

  36. Jackson AJ, Xuan H, Hage DS. Entrapment of proteins in glycogen-capped and hydrazide-activated supports. Anal Biochem. 2010;404:106–8.

    Article  CAS  Google Scholar 

  37. Kim HS, Hage DS. Immobilization methods for affinity chromatography. In: Hage DS, editor. Handbook of affinity chromatography. 2nd ed. Boca Raton: CRC Press; 2006. p. 35–78.

    Google Scholar 

  38. Bi C, Jackson A, Vargas-Badilla J, Li R, Rada G, Anguizola J, Pfaunmiller E, Hage DS. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies. J Chromatogr B. In press.

  39. Monton MRN, Forsberg EM, Brennan JD. Tailoring sol–gel-derived silica materials for optical biosensing. Chem Mater. 2012;24:796–811.

    Article  CAS  Google Scholar 

  40. Jackson AJ, Anguizola J, Pfaunmiller E, Hage DS. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal Bioanal Chem. 2013;405:5833–41.

    Article  CAS  Google Scholar 

  41. Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller E, et al. Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B. 2014;968:49–63.

    Article  CAS  Google Scholar 

  42. Ruhn PF, Garver S, Hage DS. Development of dihydrazide-activated silica supports for high-performance affinity chromatography. J Chromatogr A. 1994;669:9–19.

    Article  CAS  Google Scholar 

  43. Yoo MJ, Hage DS. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions. J Sep Sci. 2009;32:2776–85.

    Article  CAS  Google Scholar 

  44. Vargas-Badilla J. Applications of high performance affinity chromatography with high capacity stationary phases made by entrapment. PhD Dissertation, University of Nebraska-LIncoln, Lincoln, NE. 2015.

  45. Sobansky MR, Hage DS. Identification and analysis of stereoselective drug interactions with low-density lipoprotein by high-performance affinity chromatography. Anal Bioanal Chem. 2012;403:563–71.

    Article  CAS  Google Scholar 

  46. Tweed SA, Loun B, Hage DS. Effects of ligand heterogeneity in the characterization of affinity columns by frontal analysis. Anal Chem. 1997;69:4790–8.

    Article  CAS  Google Scholar 

  47. Bi C, Zheng X, Hage DS. Analysis of free drug fractions in serum by ultrafast affinity extraction and two-dimensional affinity chromatography using α1-acid glycoprotein microcolumns. J Chromatogr A. 2016;1432:49–57.

    Article  CAS  Google Scholar 

  48. Zsila F, Iwao Y. The drug binding site of human α1-acid glycoprotein: insight from induced circular dichroism and electronic absorption spectra. Biochim Biophys Acta. 2007;1770:797–809.

    Article  CAS  Google Scholar 

  49. Xuan H, Hage DS. Evaluation of a hydrazide-linked α1-acid glycoprotein chiral stationary phase: separation of R- and S-propranolol. J Sep Sci. 2006;29:1412–22.

    Article  CAS  Google Scholar 

  50. Herve F, Duche JC, d’Athis P, Marche C, Barre J, Tillement JP. Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human α1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on α1-acid glycoprotein. Pharmacogenetics. 1996;6:403–15.

    Article  CAS  Google Scholar 

  51. Herve F, Caron G, Duche JC, Gaillard P, Rahman NA, Tsantili-Kakoulidou A, et al. Ligand specificity of the genetic variants of human α1-acid glycoprotein: generation of a three-dimensional quantitative structure-activity relationship model for drug binding to the A variant. Mol Pharmacol. 1998;54:129–38.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health under grants R01 GM044931 and R01 DK069629. The authors also thank J. Vargas-Badilla for the information on the column-to-column reproducibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hage.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the work that is presented in this study. The general concept of the entrapment approach that was used in this work is described in U.S. Patent 8,268,570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anguizola, J., Bi, C., Koke, M. et al. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography. Anal Bioanal Chem 408, 5745–5756 (2016). https://doi.org/10.1007/s00216-016-9677-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9677-7

Keywords

Navigation