Skip to main content
Log in

Hyperspectral backscatter imaging: a label-free approach to cytogenetics

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Current techniques for chromosome analysis need to be improved for rapid, economical identification of complex chromosomal defects by sensitive and selective visualisation. In this paper, we present a straightforward method for characterising unstained human metaphase chromosomes. Backscatter imaging in a dark-field setup combined with visible and short near-infrared spectroscopy is used to monitor morphological differences in the distribution of the chromosomal fine structure in human metaphase chromosomes. The reasons for the scattering centres in the fine structure are explained. Changes in the scattering centres during preparation of the metaphases are discussed. FDTD simulations are presented to substantiate the experimental findings. We show that local scattering features consisting of underlying spectral modulations of higher frequencies associated with a high variety of densely packed chromatin can be represented by their scatter profiles even on a sub-microscopic level. The result is independent of the chromosome preparation and structure size. This analytical method constitutes a rapid, cost-effective and label-free cytogenetic technique which can be used in a standard light microscope.

Hyperspectral backscatter imaging for label-free characterization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6(10):782–92. doi:10.1038/nrg1692.

    Article  CAS  Google Scholar 

  2. Trask BJ. Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet. 2002;3(10):769–78. doi:10.1038/nrg905.

    Article  CAS  Google Scholar 

  3. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11. doi:10.1038/2524.

    Article  CAS  Google Scholar 

  4. Sumner AT, Evans HJ, Buckland RA. New technique for distinguishing between human chromosomes. Nature. 1971;232(27):31–2. doi:10.1038/newbio232031a0.

    CAS  Google Scholar 

  5. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;298(7731):971–2. doi:10.1016/S0140-6736(71)90287-X.

    Article  Google Scholar 

  6. Nordgren A, Heyman M, Sahlén S, Schoumans J, Söderhäll S, Nordenskjöld M, et al. Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Eur J Haematol. 2002;68(1):31–41. doi:10.1034/j.1600-0609.2002.00547.x.

    Article  CAS  Google Scholar 

  7. Bezrookove V, Hansson K, van der Burg M, van der Smagt JJ, Hilhorst-Hofstee Y, Wiegant J, et al. Individuals with abnormal phenotype and normal G-banding karyotype: improvement and limitations in the diagnosis by the use of 24-colour FISH. Hum Genet. 2000;106(4):392–8. doi:10.1007/s004390000268.

    Article  CAS  Google Scholar 

  8. Kirchhoff M, Rose H, Lundsteen C. High resolution comparative genomic hybridisation in clinical cytogenetics. J Med Genet. 2001;38(11):740–4. doi:10.1136/jmg.38.11.740.

    Article  CAS  Google Scholar 

  9. Speicher MR, Ballard SG, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12(4):368–75. doi:10.1038/ng0496-368.

    Article  CAS  Google Scholar 

  10. Schröck E, Manoir SD, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273(5274):494–7. doi:10.1126/science.273.5274.494.

    Article  Google Scholar 

  11. Chudoba I, Plesch A, Lörch T, Lemke J, Claussen U, Senger G. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet Genome Res. 1999;84(3–4):156–60. doi:10.1159/000015245.

    Article  CAS  Google Scholar 

  12. Kakazu N, Abe T. Multicolor banding technique, spectral color banding (SCAN): new development and applications. Cytogenet Genome Res. 2006;114(3–4):250–6. doi:10.1159/000094209.

    Article  CAS  Google Scholar 

  13. Shimizu N, Maekawa M, Asai S, Shimizu Y. Multicolor FISHs for simultaneous detection of genes and DNA segments on human chromosomes. Chromosome Res. 2015;23(4):649–62. doi:10.1007/s10577-015-9473-9.

    Article  CAS  Google Scholar 

  14. Lee C, Gisselsson D, Jin C, Nordgren A, Ferguson DO, Blennow E, et al. Limitations of chromosome classification by multicolor karyotyping. Am J Hum Genet. 2001;68(4):1043–7. doi:10.1086/319503.

    Article  CAS  Google Scholar 

  15. Teixeira MR. Combined classical and molecular cytogenetic analysis of cancer. Eur J Cancer. 2002;38(12):1580–4. doi:10.1016/S0959-8049(02)00117-X.

    Article  CAS  Google Scholar 

  16. Schrock E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J, Jalal S, et al. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet. 1997;101(3):255–62.

    Article  CAS  Google Scholar 

  17. Arora T, Dhir R. A review of metaphase chromosome image selection techniques for automatic karyotype generation. Med Biol Eng Comput. 2015:1–11. doi: 10.1007/s11517-015-1419-z.

  18. Gekas J, van den Berg D-G, Durand A, Vallee M, Wildschut HIJ, Bujold E, et al. Rapid testing versus karyotyping in Down’s syndrome screening: cost-effectiveness and detection of clinically significant chromosome abnormalities. Eur J Hum Genet. 2011;19(1):3–9. doi:10.1038/ejhg.2010.138.

    Article  Google Scholar 

  19. Boustany NN, Boppart SA, Backman V. Microscopic imaging and spectroscopy with scattered light. Annu Rev Biomed Eng. 2010;12(1):285–314. doi:10.1146/annurev-bioeng-061008-124811.

    Article  CAS  Google Scholar 

  20. Cottrell WJ, Wilson JD, Foster TH. Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy. Opt Lett. 2007;32(16):2348–50. doi:10.1364/ol.32.002348.

    Article  CAS  Google Scholar 

  21. Rebner K, Schmitz M, Boldrini B, Kienle A, Oelkrug D, Kessler RW. Dark-field scattering microscopy for spectral characterization of polystyrene aggregates. Opt Express. 2010;18(3):3116–27. doi:10.1364/OE.18.003116.

    Article  CAS  Google Scholar 

  22. Liu Y, Li X, Kim YL, Backman V. Elastic backscattering spectroscopic microscopy. Opt Lett. 2005;30(18):2445–7. doi:10.1364/OL.30.002445.

    Article  Google Scholar 

  23. Tamayo J, Miles M. Human chromosome structure studied by scanning force microscopy after an enzymatic digestion of the covering cell material. Ultramicroscopy. 2000;82(1–4):245–51.

    Article  CAS  Google Scholar 

  24. Thalhammer S, Koehler U, Stark RW, Heckl WM. GTG banding pattern on human metaphase chromosomes revealed by high resolution atomic-force microscopy. J Microsc. 2001;202(Pt 3):464–7. doi:10.1046/j.1365-2818.2001.00909.x.

    Article  CAS  Google Scholar 

  25. Ushiki T, Hoshi O. Atomic force microscopy for imaging human metaphase chromosomes. Chromosome Res. 2008;16(3):383–96. doi:10.1007/s10577-008-1241-7.

    Article  CAS  Google Scholar 

  26. Germer TA. Light scattering by slightly nonspherical particles on surfaces. Opt Lett. 2002;27(13):1159–61. doi:10.1364/OL.27.001159.

    Article  Google Scholar 

  27. Albella P, Moreno F, Saiz JM, González F. 2D double interaction method for modeling small particles contaminating microstructures located on substrates. J Quant Spectrosc Radiat Transf. 2007;106(1–3):4–10. doi:10.1016/j.jqsrt.2006.11.005.

    Article  CAS  Google Scholar 

  28. Nahm KB, Wolfe WL. Light-scattering models for spheres on a conducting plane: comparison with experiment. Appl Opt. 1987;26(15):2995–9. doi:10.1364/AO.26.002995.

    Article  CAS  Google Scholar 

  29. Pena JLDL, Gonzalez F, Saiz JM, Moreno F, Valle PJ. Sizing particles on substrates. A general method for oblique incidence. J Appl Phys. 1999;85(1):432–8. doi:10.1063/1.369403.

    Article  Google Scholar 

  30. EM Explorer, http://www.emexplorer.net.

  31. Brothman AR, Persons DL, Shaffer LG. Nomenclature evolution: changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res. 2009;127(1):1–4. doi:10.1159/000279442.

    Article  CAS  Google Scholar 

  32. Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T. Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc. 2007;1(6):3129–42. doi:10.1038/nprot.2006.358.

    Article  Google Scholar 

  33. Boldrini B, Kessler W, Rebner K, Kessler R. Hyperspectral imaging: a review of best practice, performance and pitfalls for inline and online applications. J Near Infrared Spectrosc. 2012;20(5):438–508. doi:10.1255/jnirs.1003.

    Article  Google Scholar 

  34. Hausmann M, Liebe B, Perner B, Jerratsch M, Greulich K-O, Scherthan H. Imaging of human meiotic chromosomes by scanning near-field optical microscopy (SNOM). Micron. 2003;34(8):441–7. doi:10.1016/S0968-4328(03)00021-0.

    Article  CAS  Google Scholar 

  35. Ostertag E, Merz T, Kessler RW. Multimodal spatially resolved near-field scattering and absorption spectroscopy. Proc SPIE. 2012;8231:82310A-1–A-10. doi:10.1117/12.909086.

    Google Scholar 

  36. De Mul FFM, van Welie AGM, Otto C, Mud J, Greve J. Micro-Raman spectroscopy of chromosomes. J Raman Spectrosc. 1984;15(4):268–72. doi:10.1002/jrs.1250150412.

    Article  Google Scholar 

  37. Langelüddecke L, Singh P, Deckert V. Exploring the nanoscale: fifteen years of tip-enhanced Raman spectroscopy. Appl Spectrosc. 2015;69(12):1357–71. doi:10.1366/15-08014.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the European Regional Development Fund and the structural funding program RWB-EFRE by the state Baden-Württemberg under the contract ‘ZAFH PhotonN’. We would especially like to thank the EM Explorer team for supporting the 3D FDTD far-field simulations and the Institute for Laser Technology in Medicine and Measurement Technique (ILM) in Ulm for preparing human metaphase chromosome samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Rebner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

The blood donors for this study supplied written consent, prior to blood donation, for the use of their blood for research purposes. The study has been performed in accordance with ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebner, K., Ostertag, E. & Kessler, R.W. Hyperspectral backscatter imaging: a label-free approach to cytogenetics. Anal Bioanal Chem 408, 5701–5709 (2016). https://doi.org/10.1007/s00216-016-9670-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9670-1

Keywords

Navigation