Skip to main content

Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance

Abstract

A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy.

Glycopolymer brushes serve as high affinity ligands for lectin and toxin interactions in a sensitive, disposable flow-through LSPR biosensor

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A. 1968;23:2135–6.

    CAS  Google Scholar 

  2. Cooper M. Label-free screening of bio-molecular interactions. Anal Bioanal Chem. 2003;377(5):834–42. doi:10.1007/s00216-003-2111-y.

    CAS  Article  Google Scholar 

  3. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391(6668):667–9.

    CAS  Article  Google Scholar 

  4. Escobedo C, Vincent S, Choudhury AIK, Campbell J, Brolo AG, Sinton D, et al. Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source. J Micromech Microeng. 2011;21(11):115001.

    Article  Google Scholar 

  5. Estevez MC, Otte MA, Sepulveda B, Lechuga LM. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta. 2014;806:55–73. doi:10.1016/j.aca.2013.10.048.

    CAS  Article  Google Scholar 

  6. Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R, Sinton D, et al. Attomolar protein detection using in-hole surface plasmon resonance. J Am Chem Soc. 2009;131(2):436–7. doi:10.1021/ja807704v.

    CAS  Article  Google Scholar 

  7. Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94. doi:10.1021/ac902925e.

    CAS  Article  Google Scholar 

  8. Yanik AA, Wang X, Erramilli S, Hong MK, Altug H. Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Applied Physics Letters. 2008;93(8):081104. doi:10.1063/1.2973165.

    Article  Google Scholar 

  9. Singh BK, Hillier AC. Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings. Anal Chem. 2008;80(10):3803–10. doi:10.1021/ac800045a.

    CAS  Article  Google Scholar 

  10. Yeh D-M, Huang C-F, Chen C-Y, Lu Y-C, Yang CC. Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology. 2008;19(34):345201.

    Article  Google Scholar 

  11. Brolo AG. Plasmonics for future biosensors. Nat Photon. 2012;6(11):709–13.

    CAS  Article  Google Scholar 

  12. Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81(11):4308–11. doi:10.1021/ac900221y.

    CAS  Article  Google Scholar 

  13. Escobedo C, Brolo AG, Gordon R, Sinton D. Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem. 2010;82(24):10015–20. doi:10.1021/ac101654f.

    CAS  Article  Google Scholar 

  14. Yanik AA, Huang M, Artar A, Chang T-Y, Altug H. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett. 2010;96(2):021101. doi:10.1063/1.3290633.

    Article  Google Scholar 

  15. Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010;10(12):4962–9. doi:10.1021/nl103025u.

    CAS  Article  Google Scholar 

  16. Buchenauer A, Bialon M, Segun D, Püttmann C, Stein C, Barth S, et al. Plasmonic flow-through biosensor using a polymeric substrate. J Micromech Microeng. 2014;24(3):034001.

    Article  Google Scholar 

  17. Duverger E, Frison N, Roche A-C, Monsigny M. Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie. 2003;85(1–2):167–79. doi:10.1016/S0300-9084(03)00060-9.

    CAS  Article  Google Scholar 

  18. Karamanska R, Clarke J, Blixt O, MacRae J, Zhang J, Crocker P, et al. Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J. 2008;25(1):69–74. doi:10.1007/s10719-007-9047-y.

    CAS  Article  Google Scholar 

  19. Smith EA, Thomas WD, Kiessling LL, Corn RM. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc. 2003;125(20):6140–8. doi:10.1021/ja034165u.

    CAS  Article  Google Scholar 

  20. Zeng X, Andrade CS, Oliveira ML, Sun X-L. Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem. 2012;402(10):3161–76. doi:10.1007/s00216-011-5594-y.

    CAS  Article  Google Scholar 

  21. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3(2):97–130.

    CAS  Article  Google Scholar 

  22. Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102(2):555–78.

    CAS  Article  Google Scholar 

  23. Park H, Rosencrantz RR, Elling L, Böker A. Glycopolymer brushes for specific lectin binding by controlled multivalent presentation of N-acetyllactosamine glycan oligomers. Macromol Rapid Commun. 2015;36(1):45–54. doi:10.1002/marc.201400453.

    CAS  Article  Google Scholar 

  24. Zhu K, Bressan RA, Hasegawa PM, Murdock LL. Identification of N-acetylglucosamine binding residues in Griffonia simplicifolia lectin II. FEBS Lett. 1996;390(3):271–4.

    CAS  Article  Google Scholar 

  25. Galili U. Immune response, accommodation, and tolerance to transplantation carbohydrate antigens. Transplantation. 2004;78(8):1093–8.

    CAS  Article  Google Scholar 

  26. Kupper CE, Rosencrantz RR, Henssen B, Pelantova H, Thones S, Drozdova A, et al. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N, N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem. 2012;8:712–25. doi:10.3762/bjoc.8.80.

    CAS  Article  Google Scholar 

  27. Ivarsson ME, Leroux J-C, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed. 2012;51(17):4024–45. doi:10.1002/anie.201104384.

    CAS  Article  Google Scholar 

  28. Meng X-L, Fang Y, Wan L-S, Huang X-J, Xu Z-K. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density. Langmuir. 2012;28(38):13616–23. doi:10.1021/la302389e.

    CAS  Article  Google Scholar 

  29. Bhattarai JK, Sharma A, Fujikawa K, Demchenko AV, Stine KJ. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy. Carbohyd Res. 2015;405:55–65. doi:10.1016/j.carres.2014.08.019.

    CAS  Article  Google Scholar 

  30. Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Evaluating the thickness of multivalent glycopolymer brushes for lectin binding. Macromol Rapid Commun. 2015;36(16):1472–8. doi:10.1002/marc.201500118.

    CAS  Article  Google Scholar 

  31. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–6. doi:10.1126/science.288.5463.113.

    CAS  Article  Google Scholar 

  32. Choi S, Wang R, Lajevardi-Khosh A, Chae J. Using competitive protein adsorption to measure fibrinogen in undiluted human serum. Appl Phys Lett. 2010;97(25):253701. doi:10.1063/1.3529445.

    Article  Google Scholar 

  33. Goodrich JA, Kugel JF. Binding and kinetics for molecular biologists. CSHL Press; 2007.

  34. Chaiken I, Rose S, Karlsson R. Analysis of macromolecular interactions using immobilized ligands. Anal Biochem. 1992;201(2):197–210.

    CAS  Article  Google Scholar 

  35. Gervais T, Jensen KF. Mass transport and surface reactions in microfluidic systems. Chem Eng Sci. 2006;61(4):1102–21.

    CAS  Article  Google Scholar 

  36. Hahnefeld C, Drewianka S, Herberg FW. Determination of kinetic data using surface plasmon resonance biosensors. Methods Mol Med. 2004;94:299–320.

    CAS  Google Scholar 

  37. Drescher DG, Ramakrishnan NA, Drescher MJ. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol (Clifton, NJ). 2009;493:323–43. doi:10.1007/978-1-59745-523-7_20.

    CAS  Article  Google Scholar 

  38. Edwards PR, Maule CH, Leatherbarrow RJ, Winzor DJ. Second-order kinetic analysis of IAsys biosensor data: its use and applicability. Anal Biochem. 1998;263(1):1–12. doi:10.1006/abio.1998.2814.

    CAS  Article  Google Scholar 

  39. de Mol NJ, Fischer MJE. Chapter 5 kinetic and thermodynamic analysis of ligand-receptor interactions: SPR applications in drug development. Handbook of surface plasmon resonance. Royal Soc Chem. 2008:123–72.

  40. Goudot A, Pourceau G, Meyer A, Gehin T, Vidal S, Vasseur J-J, et al. Quantitative analysis (Kd and IC50) of glycoconjugates interactions with a bacterial lectin on a carbohydrate microarray with DNA direct immobilization (DDI). Biosens Bioelectron. 2013;40(1):153–60. doi:10.1016/j.bios.2012.07.003.

    CAS  Article  Google Scholar 

  41. Rachel H, Chang-Chun L. Chapter 5—recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. In: Derek H, editor. Adv Carbohydr Chem Biochem. Academic Press; 2013. p. 125–207.

  42. Dam TK, Cavada BS, Grangeiro TB, Santos CF, Ceccatto VM, de Sousa FAM, et al. Thermodynamic binding studies of lectins from the Diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. J Biol Chem. 2000;275(21):16119–26. doi:10.1074/jbc.M000670200.

    CAS  Article  Google Scholar 

  43. El-Hawiet A, Kitova EN, Kitov PI, Eugenio L, Ng KK, Mulvey GL, et al. Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology. 2011;21(9):1217–27. doi:10.1093/glycob/cwr055.

    CAS  Article  Google Scholar 

  44. Nguyen TT, Kim JW, Park JS, Hwang KH, Jang TS, Kim CH, et al. Identification of oligosaccharides in human milk bound onto the toxin A carbohydrate binding site of Clostridium difficile. J Microbiol Biotechnol. 2015. doi:10.4014/jmb.1509.09034.

    Google Scholar 

  45. Ho JGS, Greco A, Rupnik M, Ng KK-S. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc Natl Acad Sci U S A. 2005;102(51):18373–8. doi:10.1073/pnas.0506391102.

    CAS  Article  Google Scholar 

  46. Hussack G, Arbabi-Ghahroudi M, van Faassen H, Songer JG, Ng KK-S, MacKenzie R, et al. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem. 2011;286(11):8961–76. doi:10.1074/jbc.M110.198754.

    CAS  Article  Google Scholar 

  47. Song L, Zhao M, Duffy DC, Hansen J, Shields K, Wungjiranirun M, et al. Development and validation of digital enzyme-linked immunosorbent assays for ultrasensitive detection and quantification of Clostridium difficile toxins in stool. J Clin Microbiol. 2015;53(10):3204–12. doi:10.1128/jcm.01334-15.

    CAS  Article  Google Scholar 

  48. Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressan RA, et al. Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci U S A. 1998;95(25):15123–8.

    CAS  Article  Google Scholar 

  49. Cseh S, Vera L, Matsushita M, Fujita T, Arlaud GJ, Thielens NM. Characterization of the interaction between L-ficolin/p35 and mannan-binding lectin-associated serine proteases-1 and -2. J Immunol (Baltimore, Md : 1950). 2002;169(10):5735–43.

    CAS  Article  Google Scholar 

  50. Teillet F, Dublet B, Andrieu J-P, Gaboriaud C, Arlaud GJ, Thielens NM. The two major oligomeric forms of human mannan-binding lectin: chemical characterization, carbohydrate-binding properties, and interaction with MBL-associated serine proteases. J Immunol. 2005;174(5):2870–7. doi:10.4049/jimmunol.174.5.2870.

    CAS  Article  Google Scholar 

  51. Gou Y, Richards S-J, Haddleton DM, Gibson MI. Investigation of glycopolymer-lectin interactions using QCM-d: comparison of surface binding with inhibitory activity. Polym Chem. 2012;3(6):1634–40. doi:10.1039/C2PY20140B.

    CAS  Article  Google Scholar 

  52. Wang Z, Chen G, Lu J, Hong L, Ngai T. Investigation of the factors affecting the carbohydrate-lectin interaction by ITC and QCM-D. Colloid Polym Sci. 2014;292(2):391–8. doi:10.1007/s00396-013-3080-0.

    CAS  Article  Google Scholar 

  53. Tang Y, Zeng X, Liang J. Surface plasmon resonance: an introduction to a surface spectroscopy technique. J Chem Educ. 2010;87(7):742–6. doi:10.1021/ed100186y.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

R.R.R., L.E., and A.B. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Elling.

Ethics declarations

The research did not involve human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ruben R. Rosencrantz, Vu Hoa Nguyen and Hyunji Park contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 501 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosencrantz, R.R., Nguyen, V.H., Park, H. et al. Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance. Anal Bioanal Chem 408, 5633–5640 (2016). https://doi.org/10.1007/s00216-016-9667-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9667-9

Keywords

  • Localized surface plasmon resonance
  • Glycopolymer brush
  • Microfluidics
  • Bacterial toxin
  • Glycosyltransferase
  • Biosensors