Analytical and Bioanalytical Chemistry

, Volume 408, Issue 20, pp 5633–5640 | Cite as

Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance

  • Ruben R. Rosencrantz
  • Vu Hoa Nguyen
  • Hyunji Park
  • Christine Schulte
  • Alexander Böker
  • Uwe Schnakenberg
  • Lothar Elling
Research Paper

Abstract

A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy.

Graphical abstract

Glycopolymer brushes serve as high affinity ligands for lectin and toxin interactions in a sensitive, disposable flow-through LSPR biosensor

Keywords

Localized surface plasmon resonance Glycopolymer brush Microfluidics Bacterial toxin Glycosyltransferase Biosensors 

Supplementary material

216_2016_9667_MOESM1_ESM.pdf (502 kb)
ESM 1(DOCX 501 kb)

References

  1. 1.
    Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A. 1968;23:2135–6.Google Scholar
  2. 2.
    Cooper M. Label-free screening of bio-molecular interactions. Anal Bioanal Chem. 2003;377(5):834–42. doi:10.1007/s00216-003-2111-y.CrossRefGoogle Scholar
  3. 3.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391(6668):667–9.CrossRefGoogle Scholar
  4. 4.
    Escobedo C, Vincent S, Choudhury AIK, Campbell J, Brolo AG, Sinton D, et al. Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source. J Micromech Microeng. 2011;21(11):115001.CrossRefGoogle Scholar
  5. 5.
    Estevez MC, Otte MA, Sepulveda B, Lechuga LM. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta. 2014;806:55–73. doi:10.1016/j.aca.2013.10.048.CrossRefGoogle Scholar
  6. 6.
    Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R, Sinton D, et al. Attomolar protein detection using in-hole surface plasmon resonance. J Am Chem Soc. 2009;131(2):436–7. doi:10.1021/ja807704v.CrossRefGoogle Scholar
  7. 7.
    Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94. doi:10.1021/ac902925e.CrossRefGoogle Scholar
  8. 8.
    Yanik AA, Wang X, Erramilli S, Hong MK, Altug H. Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Applied Physics Letters. 2008;93(8):081104. doi:10.1063/1.2973165.CrossRefGoogle Scholar
  9. 9.
    Singh BK, Hillier AC. Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings. Anal Chem. 2008;80(10):3803–10. doi:10.1021/ac800045a.CrossRefGoogle Scholar
  10. 10.
    Yeh D-M, Huang C-F, Chen C-Y, Lu Y-C, Yang CC. Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology. 2008;19(34):345201.CrossRefGoogle Scholar
  11. 11.
    Brolo AG. Plasmonics for future biosensors. Nat Photon. 2012;6(11):709–13.CrossRefGoogle Scholar
  12. 12.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81(11):4308–11. doi:10.1021/ac900221y.CrossRefGoogle Scholar
  13. 13.
    Escobedo C, Brolo AG, Gordon R, Sinton D. Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem. 2010;82(24):10015–20. doi:10.1021/ac101654f.CrossRefGoogle Scholar
  14. 14.
    Yanik AA, Huang M, Artar A, Chang T-Y, Altug H. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett. 2010;96(2):021101. doi:10.1063/1.3290633.CrossRefGoogle Scholar
  15. 15.
    Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010;10(12):4962–9. doi:10.1021/nl103025u.CrossRefGoogle Scholar
  16. 16.
    Buchenauer A, Bialon M, Segun D, Püttmann C, Stein C, Barth S, et al. Plasmonic flow-through biosensor using a polymeric substrate. J Micromech Microeng. 2014;24(3):034001.CrossRefGoogle Scholar
  17. 17.
    Duverger E, Frison N, Roche A-C, Monsigny M. Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie. 2003;85(1–2):167–79. doi:10.1016/S0300-9084(03)00060-9.CrossRefGoogle Scholar
  18. 18.
    Karamanska R, Clarke J, Blixt O, MacRae J, Zhang J, Crocker P, et al. Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J. 2008;25(1):69–74. doi:10.1007/s10719-007-9047-y.CrossRefGoogle Scholar
  19. 19.
    Smith EA, Thomas WD, Kiessling LL, Corn RM. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc. 2003;125(20):6140–8. doi:10.1021/ja034165u.CrossRefGoogle Scholar
  20. 20.
    Zeng X, Andrade CS, Oliveira ML, Sun X-L. Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem. 2012;402(10):3161–76. doi:10.1007/s00216-011-5594-y.CrossRefGoogle Scholar
  21. 21.
    Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3(2):97–130.CrossRefGoogle Scholar
  22. 22.
    Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102(2):555–78.CrossRefGoogle Scholar
  23. 23.
    Park H, Rosencrantz RR, Elling L, Böker A. Glycopolymer brushes for specific lectin binding by controlled multivalent presentation of N-acetyllactosamine glycan oligomers. Macromol Rapid Commun. 2015;36(1):45–54. doi:10.1002/marc.201400453.CrossRefGoogle Scholar
  24. 24.
    Zhu K, Bressan RA, Hasegawa PM, Murdock LL. Identification of N-acetylglucosamine binding residues in Griffonia simplicifolia lectin II. FEBS Lett. 1996;390(3):271–4.CrossRefGoogle Scholar
  25. 25.
    Galili U. Immune response, accommodation, and tolerance to transplantation carbohydrate antigens. Transplantation. 2004;78(8):1093–8.CrossRefGoogle Scholar
  26. 26.
    Kupper CE, Rosencrantz RR, Henssen B, Pelantova H, Thones S, Drozdova A, et al. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N, N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem. 2012;8:712–25. doi:10.3762/bjoc.8.80.CrossRefGoogle Scholar
  27. 27.
    Ivarsson ME, Leroux J-C, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed. 2012;51(17):4024–45. doi:10.1002/anie.201104384.CrossRefGoogle Scholar
  28. 28.
    Meng X-L, Fang Y, Wan L-S, Huang X-J, Xu Z-K. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density. Langmuir. 2012;28(38):13616–23. doi:10.1021/la302389e.CrossRefGoogle Scholar
  29. 29.
    Bhattarai JK, Sharma A, Fujikawa K, Demchenko AV, Stine KJ. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy. Carbohyd Res. 2015;405:55–65. doi:10.1016/j.carres.2014.08.019.CrossRefGoogle Scholar
  30. 30.
    Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Evaluating the thickness of multivalent glycopolymer brushes for lectin binding. Macromol Rapid Commun. 2015;36(16):1472–8. doi:10.1002/marc.201500118.CrossRefGoogle Scholar
  31. 31.
    Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–6. doi:10.1126/science.288.5463.113.CrossRefGoogle Scholar
  32. 32.
    Choi S, Wang R, Lajevardi-Khosh A, Chae J. Using competitive protein adsorption to measure fibrinogen in undiluted human serum. Appl Phys Lett. 2010;97(25):253701. doi:10.1063/1.3529445.CrossRefGoogle Scholar
  33. 33.
    Goodrich JA, Kugel JF. Binding and kinetics for molecular biologists. CSHL Press; 2007.Google Scholar
  34. 34.
    Chaiken I, Rose S, Karlsson R. Analysis of macromolecular interactions using immobilized ligands. Anal Biochem. 1992;201(2):197–210.CrossRefGoogle Scholar
  35. 35.
    Gervais T, Jensen KF. Mass transport and surface reactions in microfluidic systems. Chem Eng Sci. 2006;61(4):1102–21.CrossRefGoogle Scholar
  36. 36.
    Hahnefeld C, Drewianka S, Herberg FW. Determination of kinetic data using surface plasmon resonance biosensors. Methods Mol Med. 2004;94:299–320.Google Scholar
  37. 37.
    Drescher DG, Ramakrishnan NA, Drescher MJ. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol (Clifton, NJ). 2009;493:323–43. doi:10.1007/978-1-59745-523-7_20.CrossRefGoogle Scholar
  38. 38.
    Edwards PR, Maule CH, Leatherbarrow RJ, Winzor DJ. Second-order kinetic analysis of IAsys biosensor data: its use and applicability. Anal Biochem. 1998;263(1):1–12. doi:10.1006/abio.1998.2814.CrossRefGoogle Scholar
  39. 39.
    de Mol NJ, Fischer MJE. Chapter 5 kinetic and thermodynamic analysis of ligand-receptor interactions: SPR applications in drug development. Handbook of surface plasmon resonance. Royal Soc Chem. 2008:123–72.Google Scholar
  40. 40.
    Goudot A, Pourceau G, Meyer A, Gehin T, Vidal S, Vasseur J-J, et al. Quantitative analysis (Kd and IC50) of glycoconjugates interactions with a bacterial lectin on a carbohydrate microarray with DNA direct immobilization (DDI). Biosens Bioelectron. 2013;40(1):153–60. doi:10.1016/j.bios.2012.07.003.CrossRefGoogle Scholar
  41. 41.
    Rachel H, Chang-Chun L. Chapter 5—recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. In: Derek H, editor. Adv Carbohydr Chem Biochem. Academic Press; 2013. p. 125–207.Google Scholar
  42. 42.
    Dam TK, Cavada BS, Grangeiro TB, Santos CF, Ceccatto VM, de Sousa FAM, et al. Thermodynamic binding studies of lectins from the Diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. J Biol Chem. 2000;275(21):16119–26. doi:10.1074/jbc.M000670200.CrossRefGoogle Scholar
  43. 43.
    El-Hawiet A, Kitova EN, Kitov PI, Eugenio L, Ng KK, Mulvey GL, et al. Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology. 2011;21(9):1217–27. doi:10.1093/glycob/cwr055.CrossRefGoogle Scholar
  44. 44.
    Nguyen TT, Kim JW, Park JS, Hwang KH, Jang TS, Kim CH, et al. Identification of oligosaccharides in human milk bound onto the toxin A carbohydrate binding site of Clostridium difficile. J Microbiol Biotechnol. 2015. doi:10.4014/jmb.1509.09034.Google Scholar
  45. 45.
    Ho JGS, Greco A, Rupnik M, Ng KK-S. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc Natl Acad Sci U S A. 2005;102(51):18373–8. doi:10.1073/pnas.0506391102.CrossRefGoogle Scholar
  46. 46.
    Hussack G, Arbabi-Ghahroudi M, van Faassen H, Songer JG, Ng KK-S, MacKenzie R, et al. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem. 2011;286(11):8961–76. doi:10.1074/jbc.M110.198754.CrossRefGoogle Scholar
  47. 47.
    Song L, Zhao M, Duffy DC, Hansen J, Shields K, Wungjiranirun M, et al. Development and validation of digital enzyme-linked immunosorbent assays for ultrasensitive detection and quantification of Clostridium difficile toxins in stool. J Clin Microbiol. 2015;53(10):3204–12. doi:10.1128/jcm.01334-15.CrossRefGoogle Scholar
  48. 48.
    Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressan RA, et al. Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci U S A. 1998;95(25):15123–8.CrossRefGoogle Scholar
  49. 49.
    Cseh S, Vera L, Matsushita M, Fujita T, Arlaud GJ, Thielens NM. Characterization of the interaction between L-ficolin/p35 and mannan-binding lectin-associated serine proteases-1 and -2. J Immunol (Baltimore, Md : 1950). 2002;169(10):5735–43.CrossRefGoogle Scholar
  50. 50.
    Teillet F, Dublet B, Andrieu J-P, Gaboriaud C, Arlaud GJ, Thielens NM. The two major oligomeric forms of human mannan-binding lectin: chemical characterization, carbohydrate-binding properties, and interaction with MBL-associated serine proteases. J Immunol. 2005;174(5):2870–7. doi:10.4049/jimmunol.174.5.2870.CrossRefGoogle Scholar
  51. 51.
    Gou Y, Richards S-J, Haddleton DM, Gibson MI. Investigation of glycopolymer-lectin interactions using QCM-d: comparison of surface binding with inhibitory activity. Polym Chem. 2012;3(6):1634–40. doi:10.1039/C2PY20140B.CrossRefGoogle Scholar
  52. 52.
    Wang Z, Chen G, Lu J, Hong L, Ngai T. Investigation of the factors affecting the carbohydrate-lectin interaction by ITC and QCM-D. Colloid Polym Sci. 2014;292(2):391–8. doi:10.1007/s00396-013-3080-0.CrossRefGoogle Scholar
  53. 53.
    Tang Y, Zeng X, Liang J. Surface plasmon resonance: an introduction to a surface spectroscopy technique. J Chem Educ. 2010;87(7):742–6. doi:10.1021/ed100186y.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ruben R. Rosencrantz
    • 1
    • 2
  • Vu Hoa Nguyen
    • 3
  • Hyunji Park
    • 4
  • Christine Schulte
    • 2
  • Alexander Böker
    • 4
    • 5
  • Uwe Schnakenberg
    • 3
  • Lothar Elling
    • 1
  1. 1.Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Applied Polymer ResearchPotsdamGermany
  3. 3.Institute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachenGermany
  4. 4.Leibniz Institute for Interactive Materials, Department for Macromolecular Materials and Surfaces at RWTH AachenAachenGermany
  5. 5.Chair of Polymer Materials and Polymer TechnologiesUniversity of Potsdam, Fraunhofer Institute for Applied Polymer ResearchPotsdamGermany

Personalised recommendations