Skip to main content

Advertisement

Log in

Synthesis of bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets for sequential selective enrichment of phosphopeptides and glycopeptides for mass spectrometric analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets were designed and synthesized for the sequential selective enrichment of phosphopeptides and glycopeptides. Due to the bifunctional property of the titanium dioxide and the boronic acid group, the nanosheets were successfully applied to the enrichment of phosphopeptides and glycopeptides sequentially, evaluated by capturing phosphopeptides from tryptic digestion of model phosphoprotein bovine β-casein diluted to 0.02 ng/μL (8 × 10−16 mol/μL) and glycopeptides from tryptic digestion of model glycoprotein horseradish peroxidase (HRP) diluted to 0.1 ng/μL (2.5 × 10−15 mol/μL). The enrichment selectivity of the bifunctional nanosheets was evaluated by capturing phosphopeptides from a peptide mixture of β-casein and bovine serum albumin (BSA) with the molar ratio of 1:1000 (8.3 × 10−12 mol of β-casein and 8.3 × 10−9 mol of BSA in 100 μL) and glycopeptides from a peptide mixture of HRP and BSA up to the ratio of 1:50 (5.0 × 10−11 mol of HRP and 2.5 × 10−9 mol of BSA in 100 μL).

A workflow of the sequential enrichment strategy for phosphopeptides and glycopeptides by the bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pawson T, Scott JD. Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. 2005;30(6):286–90.

    Article  CAS  Google Scholar 

  2. Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009;139(7):1229–41.

    Article  Google Scholar 

  3. Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002;20(6):261–8.

    Article  CAS  Google Scholar 

  4. Alvarez-Manilla G, Atwood III J, Guo Y, Warren NL, Orlando R, Pierce M. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res. 2006;5(3):701–8.

    Article  CAS  Google Scholar 

  5. Donnelly E, Goldstein I. Glutaraldehyde-insolubilized concanavalin A: an adsorbent for the specific isolation of polysaccharides and glycoproteins. Biochem J. 1970;118(4):679–80.

    Article  CAS  Google Scholar 

  6. Drake PM, Schilling B, Niles RK, Braten M, Johansen E, Liu HC, et al. A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Anal Biochem. 2011;408(1):71–85.

    Article  CAS  Google Scholar 

  7. Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res. 2004;3(3):556–66.

    Article  Google Scholar 

  8. Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech. 2005;16(4):407–13.

    Google Scholar 

  9. Zhou HL, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol. 2001;19(4):375–8.

    Article  CAS  Google Scholar 

  10. McLachlin DT, Chait BT. Improved β-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem. 2003;75(24):6826–36.

    Article  CAS  Google Scholar 

  11. Ballif BA, Villén J, Beausoleil SA, Schwartz D, Gygi SP. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics. 2004;3(11):1093–101.

    Article  CAS  Google Scholar 

  12. Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1(7):517–27.

    Article  Google Scholar 

  13. Thingholm TE, Jørgensen TJ, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc. 2006;1(4):1929–35.

    Article  CAS  Google Scholar 

  14. Nelson CA, Szczech JR, Xu QG, Lawrence MJ, Jin S, Ge Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun. 2009;43:6607–9.

    Article  Google Scholar 

  15. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Færgeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4(3):310–27.

    Article  CAS  Google Scholar 

  16. Sun ZY, Hamilton KL, Reardon KF. Evaluation of quantitative performance of sequential immobilized metal affinity chromatographic enrichment for phosphopeptides. Anal Biochem. 2014;445:30–7.

    Article  CAS  Google Scholar 

  17. Tsai CF, Hsu CC, Hung JN, Wang YT, Choong WK, Zeng MY, et al. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal Chem. 2014;86(1):685–93.

    Article  CAS  Google Scholar 

  18. Xu YW, Wu ZX, Zhang LJ, Lu HJ, Yang PY, Webley PA, et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem. 2008;81(1):503–8.

    Article  Google Scholar 

  19. Nelson CA, Szczech JR, Dooley CJ, Xu QG, Lawrence MJ, Zhu HY, et al. Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials. Anal Chem. 2010;82(17):7193–201.

    Article  CAS  Google Scholar 

  20. Lu ZD, Duan JC, He L, Hu YX, Yin YD. Mesoporous TiO2 nanocrystal clusters for selective enrichment of phosphopeptides. Anal Chem. 2010;82(17):7249–58.

    Article  CAS  Google Scholar 

  21. Wang JX, Wang YN, Gao MX, Zhang XM, Yang PY. Multilayer hydrophilic poly(phenol-formaldehyde resin)-coated magnetic graphene for boronic acid immobilization as a novel matrix for glycoproteome analysis. ACS Appl Mater Interfaces. 2015;7(29):16011–7.

    Article  CAS  Google Scholar 

  22. Wang YL, Liu MB, Xie LQ, Fang CY, Xiong HM, Lu HJ. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal Chem. 2014;86(4):2057–64.

    Article  CAS  Google Scholar 

  23. Liu LT, Zhang Y, Zhang L, Yan GQ, Yao J, Yang PY, et al. Highly specific revelation of rat serum glycopeptidome by boronic acid-functionalized mesoporous silica. Anal Chim Acta. 2012;753:64–72.

    Article  CAS  Google Scholar 

  24. Chen HM, Deng CH, Zhang XM. Synthesis of Fe3O4@ SiO2@ PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI‐ToF MS analysis. Angew Chem Int Ed. 2010;49(3):607–11.

    Article  CAS  Google Scholar 

  25. Hu LH, Zhou HJ, Li YH, Sun ST, Guo LH, Ye ML, et al. Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal Chem. 2009;81(1):94–104.

    Article  CAS  Google Scholar 

  26. Iorgulescu G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life. 2008;2(3):303–7.

    Google Scholar 

  27. Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: a review. J Dent. 2005;33(3):223–33.

    Article  Google Scholar 

  28. Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241–8.

    Google Scholar 

  29. Sun NR, Deng CH, Li Y, Zhang XM. Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces. 2014;6(14):11799–804.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (No. 21175026) and National Research Projects (2012YQ12004409, 2012CB910604, and 2013CB911201).

Authors’ contributions

All authors have given approval of the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research followed the tenets of the Declaration of Helsinki, and the use of the human serum and saliva samples for research was approved by the Ethics Committee of Zhongshan Hospital, Fudan University. All individual participants gave informed consent for the use of these samples.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Gao, M., Deng, C. et al. Synthesis of bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets for sequential selective enrichment of phosphopeptides and glycopeptides for mass spectrometric analysis. Anal Bioanal Chem 408, 5489–5497 (2016). https://doi.org/10.1007/s00216-016-9647-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9647-0

Keywords

Navigation