Skip to main content
Log in

Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hakanen P, Suikkanen S, Franzén J, Franzén H, Kankaanpää H, Kremp A. Bloom and toxin dynamics of Alexandrium ostenfeldii in a shallow embayment at the SW coast of Finland, northern Baltic Sea. Harmful Algae. 2012;15:91–9.

    Article  CAS  Google Scholar 

  2. Roje-Busatto R, Ujevic I. PSP toxins profile in ascidian Microcosmus vulgaris (Heller, 1877) after human poisoning in Croatia (Adriatic Sea). Toxicon. 2014;79:28–36.

    Article  CAS  Google Scholar 

  3. Cosgrove S, NiRathaille A, Raine R. The influence of bloom intensity on the encystment rate and persistence of Alexandrium minutum in Cork Harbor Ireland. Harmful Algae. 2014;31:114–24.

    Article  Google Scholar 

  4. Diercks S, Medlin LK, Metfies K. Colorimetric detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a microtiter plate assay. Harmful Algae. 2008;7:137–45.

    Article  CAS  Google Scholar 

  5. Cestele S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82:883–92.

    Article  CAS  Google Scholar 

  6. Fonfria ES, Vilarino N, Campbell K, Elliott C, Haughey SA, Ben-Gigirey B, et al. Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensors in shellfish matrixes. Anal Chem. 2007;79:6303–11.

    Article  CAS  Google Scholar 

  7. Chen J, Gao L, Li Z, Wang S, Li J, Cao W, et al. Simultaneous screening for lipophilic and hydrophilic toxins in marine harmful algae using a serially coupled reversed-phase and hydrophilic interaction liquid chromatography separation system with high-resolution mass spectrometry. Anal Chim Acta. 2016;914:117–26.

    Article  CAS  Google Scholar 

  8. Humpage A, Magalhaes V, Froscio S. Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal Bioanal Chem. 2010;397:1655–71.

    Article  CAS  Google Scholar 

  9. Anon. AOAC International. 2005; AOAC Official Method 2005.06

  10. Anon. AOAC International. 2011; AOAC Official Method 2011.02

  11. Anon. AOAC International. 2011; AOAC Official Method 2011.27

  12. Turner DA, Hatfield CR. Refinement of AOAC Official Method SM 2005.06 Liquid chromatography-fluorescence detection method to improve performance characteristics for the determination of paralytic shellfish toxins in king and queen scallops. J AOAC Int. 2012;95:129–42.

    Article  CAS  Google Scholar 

  13. Turner DA, Hatfield CR, Rapkova M, Higman W, Algoet M, Suarez-Isla BA, et al. Comparison of AOAC 2005.06 LC official method with other methodologies for the quantitation of paralytic shellfish poisoning toxins in UK shellfish species. Anal Bioanal Chem. 2011;399:1257–70.

    Article  CAS  Google Scholar 

  14. Riet van de J, Gibbs SR, Muggah MP, Rourke WA, MacNeil DJ, Quilliam AM. Liquid chromatography post-column oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study. J AOAC Int. 2011;94:1154–76.

  15. Halme M, Rapinoja ML, Karjalainen M, Vanninen P. Verification and quantification of saxitoxin from algal samples using fast and validated hydrophilic interaction liquid chromatography-tandem mass spectrometry method. J Chromatogr B. 2012;880:50–7.

    Article  CAS  Google Scholar 

  16. Blay P, Hui PMJ, Chang J, Melanson EJ. Screening for multiple classes of marine biotoxins by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem. 2011;400:577–85.

    Article  CAS  Google Scholar 

  17. Sato S, Takata Y, Kondo S, Kotoda A, Hongo N. Quantitative ELISA kit for paralytic shellfish toxins coupled with sample pretreatment. J AOAC Int. 2014;97:339–44.

    Article  CAS  Google Scholar 

  18. Hara Y, Dong J, Ueda H. Open-sandwich immunoassay for sensitive and broad-rangedetection of a shellfish toxin gonyautoxin. Anal Chim Acta. 2013;793:107–13.

    Article  CAS  Google Scholar 

  19. Foss AJ, Phlips EJ, Aubel MT, Szabo NJ. Investigation of extraction and analysis techniques for Lyngbya wollei derived paralytic shellfish toxins. Toxicon. 2012;60:1148–58.

    Article  CAS  Google Scholar 

  20. AOAC. Paralytic Shellfish Poison. Biological Method. First Action 2005.06. Official Methods of Analysis of the AOAC. Method 2005. 49.10.03.

  21. Lope C, Claude B, Morin P, Max JP, Pena R, Ribet JP. Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts. Anal Chim Acta. 2011;683:198–205.

    Article  Google Scholar 

  22. Lian ZR, Liang ZL, Wang JT. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent. Mar Pollut Bull. 2015;91:96–101.

    Article  CAS  Google Scholar 

  23. Doué M, Bichon E, Dervilly-Pinel G, Pichon V, Chapuis-Hugon F, Lesellier E, et al. Molecularly imprinted polymer applied to the selective isolation of urinary steroid hormones: an efficient tool in the control of natural steroid hormones abuse in cattle. J Chromatogr A. 2012;1270:51–61.

    Article  Google Scholar 

  24. Lian ZR, He XL, Wang JT. Determination of sulfadiazine in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with a diode-array detector. J Chromatogr B. 2014;957:53–9.

    Article  CAS  Google Scholar 

  25. Meier F, Schott B, Riedel D, Mizaikoff B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal Chim Acta. 2012;744:68–74.

    Article  CAS  Google Scholar 

  26. Sobiech M, Zołek T, Luliński P, Maciejewska D. Separation of octopamine racemate on (R, S)-2-amino-1-phenylethanol imprinted polymer—experimental and computational studies. Talanta. 2016;146:556–67.

  27. Ahmadi F, Yawari E, Nikbakht M. Computational design of an enantioselective molecular imprinted polymer for the solid phase extraction of S-warfarin from plasma. J Chromatogr A. 2014;1338:9–16.

    Article  CAS  Google Scholar 

  28. Azimi A, Javanbakht M. Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors. Anal Chim Acta. 2014;812:184–90.

    Article  CAS  Google Scholar 

  29. Lawrence JF, Barbara N. Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection. J AOAC Int. 2001;84:1099–108.

    CAS  Google Scholar 

  30. Aversano CD, Hess P, Quilliam MA. Hydrophilic interaction liquid chromatography-mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A. 2005;1081:190–201.

    Article  Google Scholar 

  31. Lian ZR, Wang JT. Study of molecularly imprinted solid-phase extraction of gonyautoxins 2,3 in the cultured dinoflagellate Alexandrium tamarense by high-performance liquid chromatography with fluorescence detection. Environ Pollut. 2013;182:385–91.

    Article  CAS  Google Scholar 

  32. Maeda S, Ohno K, Morokuma K. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys Chem Chem Phys. 2013;15:3683–701.

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, IzmayloAF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Taroverov VNS, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stra-tmann RE, Yazyev OA, Austin J, Cammi R, Pomelli C, Ochterski J W, Martin RL, MorokumaK, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich SA, Daniels D, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT. 2009.

  34. Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032–41.

    Article  Google Scholar 

  35. Mennucci B, Tomasi J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys. 1997;106:5151–8.

    Article  CAS  Google Scholar 

  36. Mennucci B, Cancès E, Tomasi J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B. 1997;101:10506–17.

    Article  CAS  Google Scholar 

  37. Gerssen A, Mcelhinney MA, Mulder PPJ, Bire R, Hess P, Boer JD. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2009;394:1213–26.

    Article  CAS  Google Scholar 

  38. Zhuo L, Yin Y, Fu W, Qiu B, Lin Z, Yang Y, et al. Determination of paralytic shellfish poisoning toxins by HILIC-MS/MS coupled with dispersive solid phase extraction. Food Chem. 2013;137:115–21.

    Article  CAS  Google Scholar 

  39. Boundy JM, Selwood IA, Harwood TD, McNabb SP, Turner DA. Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction. J Chromatogr A. 2015;1387:1–12.

    Article  CAS  Google Scholar 

  40. Parr RG, Yang W. Density-functional theory of atoms and molecules. 1989; New York: Oxford University Press.

  41. Fonseca CM, Nascimento JCS, Borges BK. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem Phys Lett. 2016;645:174–9.

    Article  CAS  Google Scholar 

  42. Karimian N, Gholivand MB, Taherkhani F. Computational design and development of a novel voltammetric sensor for minoxidil detection based on electropolymerized molecularly imprinted polymer. J Electroanal Chem. 2015;740:45–52.

    Article  CAS  Google Scholar 

  43. Martins N, Carreiro EP, Locati A, Ramalho JPP, Cabrita MJ, Burke AJ, et al. Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: an integrated computational-assisted approach. J Chromatogr A. 2015;1409:1–10.

    Article  CAS  Google Scholar 

  44. Nicholls IA, Andersson HS, Charlton C, Henschel H, Karlsson BCG, Karlsson JG, et al. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens Bioelectron. 2009;25:543–52.

    Article  CAS  Google Scholar 

  45. Nezhadali A, Mojarrab M. Computational study and multivariate optimization of hydrochlorothiazide analysis using molecularly imprinted polymer electrochemical sensor based on carbon nanotube/polypyrrole film. Sensors Actuat B-Chem. 2014;190:829–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No.41506092), the Public Science and Technology Research Funds Projects of Ocean (No. 201505034), the Natural Science Foundation of Shandong Province of China (No. ZR2014BQ015), and the China Postdoctoral Science Foundation (No. 2014M551892).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Bei Li or Jiangtao Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(PDF 86.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Z., Li, HB. & Wang, J. Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum . Anal Bioanal Chem 408, 5527–5535 (2016). https://doi.org/10.1007/s00216-016-9644-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9644-3

Keywords

Navigation